Line 1: Line 1:
3.3 The Power Spectrum
+
=3.3 The Power Spectrum=
  
Definition. Power spectrum
+
'''Definition.''' Power spectrum
  
The power spectrum or power spectral density (PSD) of a W.S.S. random process <math>\mathbf{X}\left(t\right)</math> , real or complex, is the Fourier transform of the autocorrelation function:
+
The power spectrum or power spectral density (PSD) of a W.S.S. random process <math class="inline">\mathbf{X}\left(t\right)</math> , real or complex, is the Fourier transform of the autocorrelation function:
  
<math>S_{\mathbf{XX}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XX}}\left(\tau\right)e^{-i\omega\tau}d\tau</math>  
+
<math class="inline">S_{\mathbf{XX}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XX}}\left(\tau\right)e^{-i\omega\tau}d\tau</math>  
  
where <math>R_{\mathbf{XX}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{X}^{*}\left(t\right)\right]. </math>
+
where <math class="inline">R_{\mathbf{XX}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{X}^{*}\left(t\right)\right]. </math>
  
 
Note
 
Note
  
1. Because <math>R_{\mathbf{XX}}\left(-\tau\right)=R_{\mathbf{XX}}^{*}\left(\tau\right)</math> , <math>S_{\mathbf{XX}}\left(\omega\right)</math>  is a real function.
+
1. Because <math class="inline">R_{\mathbf{XX}}\left(-\tau\right)=R_{\mathbf{XX}}^{*}\left(\tau\right)</math> , <math class="inline">S_{\mathbf{XX}}\left(\omega\right)</math>  is a real function.
  
2. <math>R_{\mathbf{XX}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XX}}\left(\omega\right)e^{i\omega\tau}d\omega</math> . (Fourier inversion formula)
+
2. <math class="inline">R_{\mathbf{XX}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XX}}\left(\omega\right)e^{i\omega\tau}d\omega</math> . (Fourier inversion formula)
  
3. In order to consider <math>S_{\mathbf{XX}}\left(\omega\right)</math> , we assume <math>\mathbf{X}\left(t\right)</math>  is at least W.S.S.
+
3. In order to consider <math class="inline">S_{\mathbf{XX}}\left(\omega\right)</math> , we assume <math class="inline">\mathbf{X}\left(t\right)</math>  is at least W.S.S.
  
4. The PSD of <math>\mathbf{X}\left(t\right)</math>  is a non-negative valued function of <math>\omega</math> . <math>(\because R_{\mathbf{XX}}\left(\tau\right)</math>  is non-negative definite.)
+
4. The PSD of <math class="inline">\mathbf{X}\left(t\right)</math>  is a non-negative valued function of <math class="inline">\omega</math> . <math class="inline">(\because R_{\mathbf{XX}}\left(\tau\right)</math>  is non-negative definite.)
  
 
Note
 
Note
Line 25: Line 25:
 
Key result
 
Key result
  
If <math>\mathbf{X}\left(t\right)</math>  is a W.S.S. random process and it is the input to a stable L.T.I. system with impulse response <math>h\left(t\right)</math> , then the output <math>\mathbf{Y}\left(t\right)</math>  has PSD
+
If <math class="inline">\mathbf{X}\left(t\right)</math>  is a W.S.S. random process and it is the input to a stable L.T.I. system with impulse response <math class="inline">h\left(t\right)</math> , then the output <math class="inline">\mathbf{Y}\left(t\right)</math>  has PSD
  
<math>S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2}</math>  
+
<math class="inline">S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2}</math>  
  
where <math>H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt</math> .
+
where <math class="inline">H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt</math> .
  
 
Definition. Cross-power spectral density
 
Definition. Cross-power spectral density
  
The cross-power spectral density of jointly-distributed W.S.S. random processes <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{Y}\left(t\right)</math>  is the Fourier transform of their cross-correlation:
+
The cross-power spectral density of jointly-distributed W.S.S. random processes <math class="inline">\mathbf{X}\left(t\right)</math>  and <math class="inline">\mathbf{Y}\left(t\right)</math>  is the Fourier transform of their cross-correlation:
  
<math>S_{\mathbf{XY}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XY}}\left(\tau\right)e^{-i\omega\tau}d\tau</math>  
+
<math class="inline">S_{\mathbf{XY}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XY}}\left(\tau\right)e^{-i\omega\tau}d\tau</math>  
  
where <math>R_{\mathbf{XY}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{Y}^{*}\left(t\right)\right]</math> .
+
where <math class="inline">R_{\mathbf{XY}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{Y}^{*}\left(t\right)\right]</math> .
  
 
Note
 
Note
Line 45: Line 45:
 
Note
 
Note
  
<math>R_{\mathbf{XY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XY}}\left(\omega\right)e^{i\omega\tau}d\omega.</math>
+
<math class="inline">R_{\mathbf{XY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XY}}\left(\omega\right)e^{i\omega\tau}d\omega.</math>
  
 
----
 
----

Latest revision as of 11:53, 30 November 2010

3.3 The Power Spectrum

Definition. Power spectrum

The power spectrum or power spectral density (PSD) of a W.S.S. random process $ \mathbf{X}\left(t\right) $ , real or complex, is the Fourier transform of the autocorrelation function:

$ S_{\mathbf{XX}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XX}}\left(\tau\right)e^{-i\omega\tau}d\tau $

where $ R_{\mathbf{XX}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{X}^{*}\left(t\right)\right]. $

Note

1. Because $ R_{\mathbf{XX}}\left(-\tau\right)=R_{\mathbf{XX}}^{*}\left(\tau\right) $ , $ S_{\mathbf{XX}}\left(\omega\right) $ is a real function.

2. $ R_{\mathbf{XX}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XX}}\left(\omega\right)e^{i\omega\tau}d\omega $ . (Fourier inversion formula)

3. In order to consider $ S_{\mathbf{XX}}\left(\omega\right) $ , we assume $ \mathbf{X}\left(t\right) $ is at least W.S.S.

4. The PSD of $ \mathbf{X}\left(t\right) $ is a non-negative valued function of $ \omega $ . $ (\because R_{\mathbf{XX}}\left(\tau\right) $ is non-negative definite.)

Note

The PSD gives the average distribution of power in frequency for a random process.

Key result

If $ \mathbf{X}\left(t\right) $ is a W.S.S. random process and it is the input to a stable L.T.I. system with impulse response $ h\left(t\right) $ , then the output $ \mathbf{Y}\left(t\right) $ has PSD

$ S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2} $

where $ H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt $ .

Definition. Cross-power spectral density

The cross-power spectral density of jointly-distributed W.S.S. random processes $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ is the Fourier transform of their cross-correlation:

$ S_{\mathbf{XY}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XY}}\left(\tau\right)e^{-i\omega\tau}d\tau $

where $ R_{\mathbf{XY}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{Y}^{*}\left(t\right)\right] $ .

Note

The cross-power spectral density need not be real or non-negative.

Note

$ R_{\mathbf{XY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XY}}\left(\omega\right)e^{i\omega\tau}d\omega. $


Back to ECE600

Back to General Concepts of Stochastic Processes

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang