Line 14: Line 14:
  
 
<math>=\frac{1}{2L}\int_{-L}^L f(x)(\cos(nx)-i\sin(nx))\,dx=</math>
 
<math>=\frac{1}{2L}\int_{-L}^L f(x)(\cos(nx)-i\sin(nx))\,dx=</math>
 +
 +
<math>=\frac{1}{2L}(\int_{-L}^L f(x)(\cos(nx)\,dx -
 +
i\int_{-L}^L f(x)\sin(nx))\,dx)=</math>
  
 
<math>=\frac{1}{2}(a_n-ib_n).</math>
 
<math>=\frac{1}{2}(a_n-ib_n).</math>

Revision as of 08:05, 5 November 2010

Homework 11 collaboration area

Question: I'm having trouble getting HWK 11, Page 499, Problem 3 started.

Answer: You will need to use Euler's identity

$ e^{i\theta}=\cos\theta+i\sin\theta $

and separate the definitions of the complex coefficients into real and imaginary parts. For example,

$ c_n=\frac{1}{2L}\int_{-L}^L f(x)e^{-inx}\,dx= $

$ =\frac{1}{2L}\int_{-L}^L f(x)(\cos(-nx)+i\sin(-nx))\,dx= $

$ =\frac{1}{2L}\int_{-L}^L f(x)(\cos(nx)-i\sin(nx))\,dx= $

$ =\frac{1}{2L}(\int_{-L}^L f(x)(\cos(nx)\,dx - i\int_{-L}^L f(x)\sin(nx))\,dx)= $

$ =\frac{1}{2}(a_n-ib_n). $

Do the same thing for $ c_{-n} $ and combine.

Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang