Line 6: Line 6:
  
 
may be expressed as <math>b_k = \left ( \frac{1}{T} \right ) \int \limits_T x \left ( t - t_0 \right ) e^{-j k w_0 t}\, dt</math>.
 
may be expressed as <math>b_k = \left ( \frac{1}{T} \right ) \int \limits_T x \left ( t - t_0 \right ) e^{-j k w_0 t}\, dt</math>.
 +
 +
Letting <math>\tao</math> = t - <math>t_0</math> in the new integral and noting that the new variable <math>\tao</math> will
 +
 +
also range over an interval of duration T, we obtain:
 +
 +
<math>\qquad \left ( \frac{1}{T} \right ) \int \limits_T x \left ( \tao \right ) e^{-j k w_0 \left ( \tao + t_0 \right )}\, d\tao</math>

Revision as of 02:45, 23 July 2009

CTFS Time Shifting Property

If x(t) has CTFS coefficients $ a_k $ and y(t) has CTFS coefficients $ b_k $,

then the Fourier series coefficients $ b_k $ of the resulting signal y(t) = x(t - $ t_0 $)

may be expressed as $ b_k = \left ( \frac{1}{T} \right ) \int \limits_T x \left ( t - t_0 \right ) e^{-j k w_0 t}\, dt $.

Letting $ \tao $ = t - $ t_0 $ in the new integral and noting that the new variable $ \tao $ will

also range over an interval of duration T, we obtain:

$ \qquad \left ( \frac{1}{T} \right ) \int \limits_T x \left ( \tao \right ) e^{-j k w_0 \left ( \tao + t_0 \right )}\, d\tao $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn