Line 47: Line 47:
 
#[[Bonus 2 - Summer 08_Old Kiwi]]
 
#[[Bonus 2 - Summer 08_Old Kiwi]]
 
#[[Bonus 3 - Exam I_Old Kiwi]]
 
#[[Bonus 3 - Exam I_Old Kiwi]]
 +
#[[Bonus 5 - Exam I_Old Kiwi]]
  
 
==Other Topics==
 
==Other Topics==

Revision as of 16:29, 30 June 2008

General Course Information

ECE 301

Summer 2008

Instructor: Aung Kyi San

Lecture: M T W Th F 9:50 am - 10:50 am @ EE 117

Office Hours: M W 11:00 am - 12:00 am

Main Topics of the Course

  1. Lecture 1
    1. Signal Energy and Power_Old Kiwi
    2. Transformation of the independent variable_Old Kiwi
  2. Lecture 2
    1. Periodic Signals_Old Kiwi
    2. Even and Odd Signals_Old Kiwi
    3. Exponential and Sinusoidal signals (CT)_Old Kiwi
  3. Lecture 3
    1. Exponential and Sinusoidal signals (DT)_Old Kiwi
    2. The unit impulse and unit step functions_Old Kiwi
  4. Lecture 4
    1. Continuous-Time and Discrete-Time_Old Kiwi
    2. Basic System Properties_Old Kiwi
  5. Lecture 5
    1. DT LTI systems: The convolution sum_Old Kiwi
  6. Lecture 6
    1. CT LTI systems: The convolution integral_Old Kiwi
  7. Lecture 7
    1. Properties of LTI systems_Old Kiwi
    2. Unit step response of an LTI system_Old Kiwi
  8. Lecture 8
  9. Lecture 9
    1. Response of LTI systems to complex exponentials_Old Kiwi
    2. Fourier Series representation of continuous-time periodic signals_Old Kiwi

Homework Problems

  1. Homework 1 - Summer 08_Old Kiwi
  2. Homework 2 - Summer 08_Old Kiwi
  3. Homework 3 - Summer 08_Old Kiwi

Bonus Problems

  1. Bonus 2 - Summer 08_Old Kiwi
  2. Bonus 3 - Exam I_Old Kiwi
  3. Bonus 5 - Exam I_Old Kiwi

Other Topics

Add other relevent/interesting pages here:

You can use latex in Kiwi, here is a Latex Cheat Sheet

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett