Line 20: Line 20:
  
 
Example
 
Example
 +
<math>p=(p_1,p_2,\cdots, p_N) \in \Re ^{3 \times N}</math>
 +
<math>\varphi</math> maps representation position of taps on body onto <math>(d_{12},d_{13},d_{14},\cdots , d_{N-1, N} )</math>
 +
where <math>d_{ij}</math>= Euclidean distance between <math>p_i</math> and <math>p_j</math>
 +
 +
Can reconstruct up to a rotation and translation
 +
 +
Warning: Euclidean distance in invariant coordination space has nothing to do with Euclidean distance or proanstes distance in initial feature space

Revision as of 10:49, 10 March 2008

ECE662 Main Page

Class Lecture Notes

Nearest Neighbors Clarification Rule(Alternative Approaches) --Han47 10:34, 10 March 2008 (EDT)

Alternative Approach

find invariant coordination $ \varphi : \Re ^k \rightarrow \Re ^n $ --Han47 10:41, 10 March 2008 (EDT) such that $ \varphi (x) = \varphi (\bar x) $ for all $ x, \bar x $ which are related by a rotation & translation

Do not trivialize!

e.g.) $ \varphi (x) =0 $ gives us invariant coordinate but lose separation

Want $ \varphi (x) = \varphi (\bar x) $ $ \Leftrightarrow x, \bar x $ are related by a rotation and translation

Example $ p=(p_1,p_2,\cdots, p_N) \in \Re ^{3 \times N} $ $ \varphi $ maps representation position of taps on body onto $ (d_{12},d_{13},d_{14},\cdots , d_{N-1, N} ) $ where $ d_{ij} $= Euclidean distance between $ p_i $ and $ p_j $

Can reconstruct up to a rotation and translation

Warning: Euclidean distance in invariant coordination space has nothing to do with Euclidean distance or proanstes distance in initial feature space

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin