Line 9: Line 9:
 
and when,
 
and when,
  
<math> t-2 >0 \rightarrow x_2(t) = e^{-3t-6} </math>
+
<math> t-2 >0 \rightarrow x_2(t) = e^{-3t+6} </math>
  
 
So, we can then compute the Fourier series by adding the integrals of each diferent case.
 
So, we can then compute the Fourier series by adding the integrals of each diferent case.
Line 15: Line 15:
 
<math>\ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt </math>
 
<math>\ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt </math>
  
<math> \mathcal{X}(\omega) = \int_{-\infty}^{2} e^{3t-6}e^{-j\omega t}\,dt + \int_{2}^{\infty} e^{-3t-6}e^{-j\omega t} \,dt </math>
+
<math> \mathcal{X}(\omega) = \int_{-\infty}^{2} e^{3t-6}e^{-j\omega t}\,dt + \int_{2}^{\infty} e^{-3t+6}e^{-j\omega t} \,dt </math>
  
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{2} e^{3t-j\omega t}\,dt + \frac{1}{e^{6}} \int_{2}^{\infty} e^{-3t-j\omega t} \,dt </math>
+
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{2} e^{3t-j\omega t}\,dt + e^{6} \int_{2}^{\infty} e^{-3t-j\omega t} \,dt </math>
  
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{2} e^{t(3-j\omega)}\,dt + \frac{1}{e^{6}} \int_{2}^{\infty} e^{-t(3+j\omega)} \,dt </math>
+
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{2} e^{t(3-j\omega)}\,dt + e^{6} \int_{2}^{\infty} e^{-t(3+j\omega)} \,dt </math>
  
<math> \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{2}_{-\infty} } \frac{1}{e^{6}} + {\left. \frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_2 } \frac{1}{e^{6}}\,</math>
+
<math> \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{2}_{-\infty} } \frac{1}{e^{6}} + {\left. \frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_2 } e^{6}\,</math>

Revision as of 17:48, 8 October 2008

$ x(t) = e^{-3|t-2|} $

Noticing that there is an absolute value, we can proceed to divide in tow cases.

When

$ t-2 < 0 \rightarrow x_1(t) = e^{3t-6} $

and when,

$ t-2 >0 \rightarrow x_2(t) = e^{-3t+6} $

So, we can then compute the Fourier series by adding the integrals of each diferent case.

$ \ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \int_{-\infty}^{2} e^{3t-6}e^{-j\omega t}\,dt + \int_{2}^{\infty} e^{-3t+6}e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{2} e^{3t-j\omega t}\,dt + e^{6} \int_{2}^{\infty} e^{-3t-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{2} e^{t(3-j\omega)}\,dt + e^{6} \int_{2}^{\infty} e^{-t(3+j\omega)} \,dt $

$ \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{2}_{-\infty} } \frac{1}{e^{6}} + {\left. \frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_2 } e^{6}\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett