(Problem 2 Fourier Transfer)
Line 5: Line 5:
 
<math> F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt </math>
 
<math> F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt </math>
  
<math> \chi(\omega) = \int_{-\infty}^\infty \cos{\pi t} e^{-j\omega t} dt </math>
+
<math> \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt </math>
  
<math> \chi(\omega) = \int_{-\infty}^\infty \cos{\pi t} e^{-j\omega t} dt </math>
+
<math> \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt </math>

Revision as of 14:08, 8 October 2008

Problem 2 Fourier Transfer

$ x(t) = \cos{\pi t} $

$ F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt $

$ \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt $

$ \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva