(New page: =Obtain the input impulse response h[n] and the system function H(z) of your system= Defining a DT LTI: <math>y[n] = x[n+5] + x[n-3]\,</math><br> So, we have the unit impulse response: <ma...) |
|||
Line 5: | Line 5: | ||
<math>h[n] = \delta[n-5] + \delta[n-3]\,</math> | <math>h[n] = \delta[n-5] + \delta[n-3]\,</math> | ||
− | Then we find the frequency response: | + | Then we find the frequency response:<br><br> |
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\,</math> | <math>F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\,</math> | ||
Revision as of 08:41, 26 September 2008
Obtain the input impulse response h[n] and the system function H(z) of your system
Defining a DT LTI:
$ y[n] = x[n+5] + x[n-3]\, $
So, we have the unit impulse response:
$ h[n] = \delta[n-5] + \delta[n-3]\, $
Then we find the frequency response:
$ F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\, $
$ F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} \, $