(Define a periodic CT signal and compute its Fourier series coefficients.)
(Define a periodic CT signal and compute its Fourier series coefficients.)
Line 4: Line 4:
 
<math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math>
 
<math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math>
  
and
+
where
  
 
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>.
 
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>.
Line 17: Line 17:
  
 
<math> a_2 = a_-2 = 1 </math>
 
<math> a_2 = a_-2 = 1 </math>
 +
 +
a_k = 0 elsewhere

Revision as of 09:03, 25 September 2008

Define a periodic CT signal and compute its Fourier series coefficients.

For CT,

$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

where

$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.

Let the signal be

y(t) = 2*sin(2t)+2*cos(4t)

$ y(t) = 2(\frac{e^{j2t} - e^{-j2t}}{2j}) + 2(\frac{e^{2j2t} + e^{-2j2t}}{2}) \! $

$ a_1 = a_-1 = (\frac{1}{j}) $

$ a_2 = a_-2 = 1 $

a_k = 0 elsewhere

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva