(New page: Some definitions and explainations 1.Let A be the 3x3 matrix used to encrypt the message. <math>\,A=\left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{3...)
 
Line 1: Line 1:
 
Some definitions and explainations
 
Some definitions and explainations
  
1.Let A be the 3x3 matrix used to encrypt the message.
+
== How can Bob Decrypt the Message? ==
 +
 
 +
Let A be the 3x3 matrix used to encrypt the message.
  
 
<math>\,A=\left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right] \,</math>
 
<math>\,A=\left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right] \,</math>
Line 9: Line 11:
 
<math>\,B=\left[ \begin{array}{ccc} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array} \right] \,</math>
 
<math>\,B=\left[ \begin{array}{ccc} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array} \right] \,</math>
  
Note:this can also be written as <math>\,B=\left[ \begin{array}{ccc} B_{1} & B_{2} & B_{3} \end{array} \right] \,</math>
+
Correspondingly, C is the decrypted message
  
Correspondingly,
+
From the poblem,we know: C=B*A
  
2.
+
Based on the multiplication of Matrix we can find that
  
Some defines:
 
  
<math>\,m=\left[ \begin{array}{ccc} x & y & z \end{array} \right] \,</math> is the message
 
  
<math>\,e=\left[ \begin{array}{ccc} s & t & u \end{array} \right] \,</math> is the encrypted message
 
  
== How can Bob Decrypt the Message? ==
+
 
We have the equation
+
 
 +
 
 +
 
 +
 
 +
<math>\,C_1 = B_1*A\,</math>, same for <math>C_2</math> and <math>C_3</math>
 +
 
  
 
<math>\,e=mA\,</math>
 
<math>\,e=mA\,</math>

Revision as of 10:47, 18 September 2008

Some definitions and explainations

How can Bob Decrypt the Message?

Let A be the 3x3 matrix used to encrypt the message.

$ \,A=\left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right] \, $

Let B be the 3x3 matrix for the unencrypted message.

$ \,B=\left[ \begin{array}{ccc} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array} \right] \, $

Correspondingly, C is the decrypted message

From the poblem,we know: C=B*A

Based on the multiplication of Matrix we can find that





$ \,C_1 = B_1*A\, $, same for $ C_2 $ and $ C_3 $


$ \,e=mA\, $

which is how the message is being encrypted. If we multiply both sides by the inverse of $ \,A\, $, we get

$ \,eA^{-1}=mAA^{-1}=mI=m\, $

Therefore, we can get the original message back if we multiply the encrypted message by $ \,A^{-1}\, $, given that the inverse of $ \,A\, $ exists.

Can Eve Decrypt the Message Without Finding the Inverse of A?

Yes, because of the fact $ \,e=mA\, $ is linear and Eve was given three linearly independent vector responses to the system and their corresponding inputs.


Proof of Linearity

Say we have two inputs $ \,m_1\, $ and $ \,m_2\, $ yielding outputs

$ \,e_1=m_1A\, $ and

$ \,e_2=m_2A\, $, respectively.

thus,

$ \,ae_1+be_2=am_1A+bm_2A $ for any $ \,a,b\in \mathbb{R}\, $


Now, apply $ \,am_1+bm_2\, $ to the system

$ \,(am_1+bm_2)A=am_1A+bm_2A\, $


Since the two results are equal

$ \,am_1A+bm_2A=am_1A+bm_2A\, $

the system is linear.


Main Proof

Since Eve was given that for the system

$ \,m_1=(1,0,4)\, $ yields $ \,e_1=(2,0,0)\, $

$ \,m_2=(0,1,0)\, $ yields $ \,e_2=(0,1,0)\, $

$ \,m_3=(1,0,1)\, $ yields $ \,e_3=(0,0,3)\, $

where $ \,e_1, e_2, e_3\, $ are clearly linearly independent vectors, Eve can take any encrypted message and write it as a linear combination of $ \,e_1, e_2, e_3\, $

$ \,\exists a,b,c\in \mathbb{R}\, $ such that $ \,e=ae_1+be_2+ce_3\, $, for any $ \,e\in \mathbb{R}^{3}\, $


Because the system is linear, we can write the input as

$ \,m=am_1+bm_2+cm_3\, $

thus, the message has been decrypted without knowing $ \,A^{-1}\, $.

What is the Decrypted Message?

The given encrypted message is

$ \,e=(2,23,3)\, $


This can be rewritten as a linear combination of the given system result vectors

$ \,e=ae_1+be_2+ce_3\, $

$ \,e=(2,23,3)=1\cdot (2,0,0)+23\cdot (0,1,0)+1\cdot (0,0,3)\, $


Because the system s linear, we can write the input as

$ \,m=am_1+bm_2+cm_3\, $

$ \,m=1\cdot (1,0,4)+23\cdot (0,1,0)+1\cdot (1,0,1)=(2,23,5)\, $


Therefore, the unencrypted message is "BWE".

How can Bob decrypt the message?

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang