Line 28: Line 28:
  
 
b)<br>
 
b)<br>
<math>f_x(\omega)=\dfrac{\partialF_x(\omega)}{\partial\omega}</math><br>
+
<math>f_x(\omega)=\dfrac{\partial F_x(\omega)}{\partial\omega}</math><br>
 
<math>f_x(\omega)=
 
<math>f_x(\omega)=
 
\begin{cases}
 
\begin{cases}
Line 38: Line 38:
  
 
c)<br>
 
c)<br>
<math>X(\omega)\bar=\int_{-\infty}^{\infty} \omegaf_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}(\omega)^2 +\dfrac{2}{h}\omega d\omega</math>
+
<math>X(\omega)\bar=\int_{-\infty}^{\infty} \omega f_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}(\omega)^2 +\dfrac{2}{h}\omega d\omega</math>
  
 
----
 
----

Revision as of 23:15, 18 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 1


Solution

a)
$ F_x(\omega)= \begin{cases} 0 & \omega<0 \\ \dfrac{1}{2}hb-\dfrac{1}{2}hb(\dfrac{h-\omega}{h})^2=\dfrac{2\omega}{h}-\dfrac{w^2}{h^2} & 0<=\omega<h \\ 1 & \omega>=h \end{cases} $

b)
$ f_x(\omega)=\dfrac{\partial F_x(\omega)}{\partial\omega} $
$ f_x(\omega)= \begin{cases} 0 & \omega<0 \\ \dfrac{-2}{h^2}\omega+\dfrac{2}{h} & 0<=\omega<h \\ 0 & \omega>=h \end{cases} $

c)
$ X(\omega)\bar=\int_{-\infty}^{\infty} \omega f_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}(\omega)^2 +\dfrac{2}{h}\omega d\omega $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett