Line 23: Line 23:
 
All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_07/FO-2%20QE%2007.pdf link]
 
All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_07/FO-2%20QE%2007.pdf link]
 
=Solutions of all questions=
 
=Solutions of all questions=
:'''Click [[ECE_PhD_QE_FO2_2007_Problem1.1|here]] to view student [[ECE_PhD_QE_FO2_2007_Problem1.1|answers and discussions]]'''
+
1)
 +
<math>
 +
\nabla\times\bar{E} = -\frac{\partial B}{\partial t}\hspace{0.5cm} \nabla\times\bar{H} =\frac{\partial \bar{D}}{\partial t}\hspace{0.5cm} \nabla \cdot\bar{D} =0\hspace{0.5cm} \nabla \cdot\bar{B} =0\\
 +
</math>
 +
 
 +
a)
 +
 
 +
<math>
 +
\nabla\times\nabla\times\bar{E} = -\frac{\partial}{\partial t}(\nabla \times\bar{B}) = -\mu_0\frac{\partial}{\partial t}\bigg(\frac{\partial D}{\partial t}\bigg) =-\mu_0\epsilon_0\frac{\partial\bar{E}}{\partial t^2} \\
 +
\nabla^2 \bar{E} = \nabla\cancelto{0}{(\nabla\cdot \bar{E})} - \nabla\times\nabla\times\bar{E} \to \text{ using } \nabla\cdot\epsilon_0\bar{E}=0\\
 +
\nabla\times\nabla\times\bar{E} = -\nabla^2\bar{E}\\
 +
\nabla^2\bar{E} -\mu_0\epsilon_0\frac{\partial^2E}{\partial t^2} =0\\
 +
</math>
 +
 
 +
b)
 +
 
 +
<math>
 +
\nabla^2\bar{E}e^{j\omega t} - \mu_0\epsilon_0\frac{\partial^2}{\partial t^2}\bar{E}e^{j\omega t} =0\\
 +
\nabla^2\bar{E}e^{j\omega t} - \mu_0\epsilon_0(-\omega^2)\bar{E}e^{j\omega t} =0\\
 +
\nabla^2\bar{E} + (\omega^2\mu_0\epsilon_0) \bar{E} =0\\
 +
\bar{E} =\hat{y} E_0e^{+j(\omega t -\beta z)}\hspace{0.5cm}\beta=\omega\sqrt{\mu_0\epsilon_0}\\
 +
\bar{H} =\hat{x} \frac{E_0}{n_0}e^{j(\omega t -\beta z)}\hspace{0.5cm} n_0 = \sqrt{\frac{\mu_0}{\epsilon_0}}\\
 +
</math>
 +
 
 +
 
 +
\underline{side note:}
 +
<math>
 +
\triangle\omega t -\triangle\beta z = \text{constant}\\
 +
\triangle\omega -\triangle\beta \frac{\partial z}{\partial t} =0\\
 +
\frac{dz}{dt} = \frac{\triangle \omega}{\triangle \beta}= \bigg(\frac{\partial\beta}{\partial\omega}\bigg)^{-1} = \sqrt{y}
 +
</math>
 +
 
 +
c)
 +
 
 +
<math>
 +
\omega t -\beta z = constant\\
 +
\omega - \beta  \frac{dz}{dt} = 0\\
 +
\frac{dz}{dt} = \frac{\omega}{\beta}\to v_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu_0\epsilon_0}} = c \to \text{dispersionless; does not depend on frequency}\\
 +
</math>
 +
 
 +
-------------------------------
 +
 
 +
2)
 +
 
 +
a)
 +
 
 +
<math>
 +
Z_{in} = Z_0\frac{Z_L + Z_0j\tan(\beta l)}{Z_0 + Z_1j\tan(\beta l)}\hspace{0.5cm}\beta l =\frac{2\pi}{\lambda}\bigg(\frac{\lambda}{4}\bigg)= \frac{\pi}{2}=\hspace{0.5cm}\tan\bigg(\frac{\pi}{2}\bigg)= \infty\\
 +
Z_{in} = \frac{Z_0^2}{Z_L} = \frac{Z_0^2}{Z_0/2} = 2Z_0  \\
 +
\text{\underline{want}: }Z_Q//Z_{in} = Z_0 =\frac{1}{\frac{1}{Z_q} +\frac{1}{2Z_0}}\hspace{1cm}\Gamma = \frac{Z_{in} - Z_0}{Z_{in}+Z_0}\\
 +
\frac{1}{Z_q} +\frac{1}{2Z_0} =\frac{1}{Z_0}\\
 +
\frac{1}{Z_q} = \frac{1}{2Z_0}\\
 +
Z_q = 2Z_0\\
 +
</math>
 +
 
 +
b)
 +
<math>
 +
V(x) = V_0^+e^{-j\gamma x} + V_0^-e^{+j\gamma x}\\
 +
\beta l =\frac{2\pi}{\lambda}\bigg(2\frac{3}{4}\lambda\bigg)=3\pi\hspace{1cm}\tan(3\pi) = \tan(\pi) = 0\\
 +
Z_{in} = Z_0\frac{Z_L + Z_0j\tan(\beta l)}{Z_0 + Z_1j\tan(\beta l)} = Z_L = R_L = 0\\
 +
\text{then } V(x) = 0\\
 +
</math>
 +
 
 +
c)
 +
 
 +
[[Image:A1FO22007.png|Alt text|426x226px]]
 +
 
 +
for <math>Z_{in} = Z_L: \tan(\beta l)=0\hspace{1cm}L<<\lambda</math> \\
 +
<math>\beta l = \frac{2\pi}{\lambda}(l) = n\pi</math> where <math>n = 0,1,2,...</math>\\
 +
<math>l = \frac{n\lambda}{2}</math>\\
 +
 
 +
frequency must be low (no radiation) such that we only have TEM modes propagating.
 +
 
 +
-------------------------------
 +
3)
 +
 
 +
a)
 +
 
 +
<math>
 +
\omega^2\mu\epsilon = \bigg(\frac{\pi m}{a}\bigg)^2 +  \bigg(\frac{\pi n}{b}\bigg)^2\\
 +
\left\{
 +
\begin{array}{ll}
 +
a=0.015m\\
 +
b=0.0075m\\
 +
TE_{10} \text{ lowest mode (excited mode, depends on excitation method)}
 +
\end{array}
 +
\right.\\
 +
f_c = \frac{1}{2\sqrt{\mu_0\epsilon_0}}\sqrt{\bigg(\frac{m}{a}\bigg)^2 + \bigg(\frac{n}{b}\bigg)^2}\\
 +
f_c = \frac{c}{2}\bigg(\frac{1}{a}\bigg) = \frac{3\cdot10^8}{0.03} = 10^{10}\frac{1}{5} = 10GHz\\
 +
</math>
 +
 
 +
b)
 +
 
 +
<math>
 +
\beta =k\sqrt{1-\bigg(\frac{f_c}{f}\bigg)^2} = \omega\sqrt{\mu_0\epsilon_0}\sqrt{1-\bigg(\frac{f_c}{f}\bigg)^2}\\
 +
=\sqrt{\omega^2\mu_0\epsilon_0 - (2\pi f)^2\mu_0\epsilon_0\bigg(\frac{f_c}{f}\bigg)^2} = \sqrt{\omega^2\mu_0\epsilon_0 - (2\pi)^2\mu_0\epsilon_0f_c^2} \\
 +
</math>
 +
 
 +
<math>
 +
\begin{align*}
 +
\beta^2&=k^2-k_c^2\\
 +
k_c^2&=k_x^2+k_y^2\\
 +
k_x &= \frac{m\pi}{a}\\
 +
k_y &= \frac{n\pi}{b}
 +
\end{align*} \\
 +
 
 +
\beta = \sqrt{\omega^2\mu_0\epsilon_0 - \bigg(\frac{m\pi}{a}\bigg)^2 - \bigg(\frac{n\pi}{b}\bigg)^2}\\
 +
</math>
 +
 
 +
c)
 +
 
 +
<math>
 +
H_z(x,y,z) = H_z^0(x,y)e^{-j\beta z} \hspace{0.5cm}TE \\
 +
</math>
 +
 
 +
BCs:
 +
<math>
 +
\frac{\delta H_z}{\delta x}|_{x=0} = 0\hspace{0.5cm} \frac{\delta H_z}{\delta y}|_{y=0} = 0 \\
 +
\frac{\delta H_z}{\delta x}|_{x=a} = 0\hspace{0.5cm} \frac{\delta H_z}{\delta y}|_{y=b} = 0 \\
 +
\bar{H}_z = H_0 \cos\bigg(\frac{m\pi x}{a}\bigg)\cos\bigg(\frac{n\pi y}{b}\bigg)\cos(\omega t - \beta z) \\
 +
</math>
 +
 
 +
d)
 +
 
 +
<math>
 +
\omega_1 < 2\pi f_c<\omega_2\\
 +
E_0 \cos(\omega_1t)\cos(\omega_2t) = \frac {E_0}{2}\{\cos[(\omega_1-\omega_2)t] + \cos[(\omega_1+\omega_2)t]\}\\
 +
</math>
 +
 
 +
<math>|\omega_1-\omega_2| =|9\pi\cdot10^9| \hspace{0.5cm}|\omega_1+\omega_2| = 29\pi\cdot10^9 \to</math> both will pass through; no affect on the modulation frequency
 +
 
  
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 19:16, 18 June 2017


ECE Ph.D. Qualifying Exam

Fields and Optics (FO)

Question 2: Dynamics 1 : Propagation, transmission and radiation

August 2007



Questions

All questions are in this link

Solutions of all questions

1) $ \nabla\times\bar{E} = -\frac{\partial B}{\partial t}\hspace{0.5cm} \nabla\times\bar{H} =\frac{\partial \bar{D}}{\partial t}\hspace{0.5cm} \nabla \cdot\bar{D} =0\hspace{0.5cm} \nabla \cdot\bar{B} =0\\ $

a)

$ \nabla\times\nabla\times\bar{E} = -\frac{\partial}{\partial t}(\nabla \times\bar{B}) = -\mu_0\frac{\partial}{\partial t}\bigg(\frac{\partial D}{\partial t}\bigg) =-\mu_0\epsilon_0\frac{\partial\bar{E}}{\partial t^2} \\ \nabla^2 \bar{E} = \nabla\cancelto{0}{(\nabla\cdot \bar{E})} - \nabla\times\nabla\times\bar{E} \to \text{ using } \nabla\cdot\epsilon_0\bar{E}=0\\ \nabla\times\nabla\times\bar{E} = -\nabla^2\bar{E}\\ \nabla^2\bar{E} -\mu_0\epsilon_0\frac{\partial^2E}{\partial t^2} =0\\ $

b)

$ \nabla^2\bar{E}e^{j\omega t} - \mu_0\epsilon_0\frac{\partial^2}{\partial t^2}\bar{E}e^{j\omega t} =0\\ \nabla^2\bar{E}e^{j\omega t} - \mu_0\epsilon_0(-\omega^2)\bar{E}e^{j\omega t} =0\\ \nabla^2\bar{E} + (\omega^2\mu_0\epsilon_0) \bar{E} =0\\ \bar{E} =\hat{y} E_0e^{+j(\omega t -\beta z)}\hspace{0.5cm}\beta=\omega\sqrt{\mu_0\epsilon_0}\\ \bar{H} =\hat{x} \frac{E_0}{n_0}e^{j(\omega t -\beta z)}\hspace{0.5cm} n_0 = \sqrt{\frac{\mu_0}{\epsilon_0}}\\ $


\underline{side note:} $ \triangle\omega t -\triangle\beta z = \text{constant}\\ \triangle\omega -\triangle\beta \frac{\partial z}{\partial t} =0\\ \frac{dz}{dt} = \frac{\triangle \omega}{\triangle \beta}= \bigg(\frac{\partial\beta}{\partial\omega}\bigg)^{-1} = \sqrt{y} $

c)

$ \omega t -\beta z = constant\\ \omega - \beta \frac{dz}{dt} = 0\\ \frac{dz}{dt} = \frac{\omega}{\beta}\to v_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu_0\epsilon_0}} = c \to \text{dispersionless; does not depend on frequency}\\ $


2)

a)

$ Z_{in} = Z_0\frac{Z_L + Z_0j\tan(\beta l)}{Z_0 + Z_1j\tan(\beta l)}\hspace{0.5cm}\beta l =\frac{2\pi}{\lambda}\bigg(\frac{\lambda}{4}\bigg)= \frac{\pi}{2}=\hspace{0.5cm}\tan\bigg(\frac{\pi}{2}\bigg)= \infty\\ Z_{in} = \frac{Z_0^2}{Z_L} = \frac{Z_0^2}{Z_0/2} = 2Z_0 \\ \text{\underline{want}: }Z_Q//Z_{in} = Z_0 =\frac{1}{\frac{1}{Z_q} +\frac{1}{2Z_0}}\hspace{1cm}\Gamma = \frac{Z_{in} - Z_0}{Z_{in}+Z_0}\\ \frac{1}{Z_q} +\frac{1}{2Z_0} =\frac{1}{Z_0}\\ \frac{1}{Z_q} = \frac{1}{2Z_0}\\ Z_q = 2Z_0\\ $

b) $ V(x) = V_0^+e^{-j\gamma x} + V_0^-e^{+j\gamma x}\\ \beta l =\frac{2\pi}{\lambda}\bigg(2\frac{3}{4}\lambda\bigg)=3\pi\hspace{1cm}\tan(3\pi) = \tan(\pi) = 0\\ Z_{in} = Z_0\frac{Z_L + Z_0j\tan(\beta l)}{Z_0 + Z_1j\tan(\beta l)} = Z_L = R_L = 0\\ \text{then } V(x) = 0\\ $

c)

Alt text

for $ Z_{in} = Z_L: \tan(\beta l)=0\hspace{1cm}L<<\lambda $ \\ $ \beta l = \frac{2\pi}{\lambda}(l) = n\pi $ where $ n = 0,1,2,... $\\ $ l = \frac{n\lambda}{2} $\\

frequency must be low (no radiation) such that we only have TEM modes propagating.


3)

a)

$ \omega^2\mu\epsilon = \bigg(\frac{\pi m}{a}\bigg)^2 + \bigg(\frac{\pi n}{b}\bigg)^2\\ \left\{ \begin{array}{ll} a=0.015m\\ b=0.0075m\\ TE_{10} \text{ lowest mode (excited mode, depends on excitation method)} \end{array} \right.\\ f_c = \frac{1}{2\sqrt{\mu_0\epsilon_0}}\sqrt{\bigg(\frac{m}{a}\bigg)^2 + \bigg(\frac{n}{b}\bigg)^2}\\ f_c = \frac{c}{2}\bigg(\frac{1}{a}\bigg) = \frac{3\cdot10^8}{0.03} = 10^{10}\frac{1}{5} = 10GHz\\ $

b)

$ \beta =k\sqrt{1-\bigg(\frac{f_c}{f}\bigg)^2} = \omega\sqrt{\mu_0\epsilon_0}\sqrt{1-\bigg(\frac{f_c}{f}\bigg)^2}\\ =\sqrt{\omega^2\mu_0\epsilon_0 - (2\pi f)^2\mu_0\epsilon_0\bigg(\frac{f_c}{f}\bigg)^2} = \sqrt{\omega^2\mu_0\epsilon_0 - (2\pi)^2\mu_0\epsilon_0f_c^2} \\ $

$ \begin{align*} \beta^2&=k^2-k_c^2\\ k_c^2&=k_x^2+k_y^2\\ k_x &= \frac{m\pi}{a}\\ k_y &= \frac{n\pi}{b} \end{align*} \\ \beta = \sqrt{\omega^2\mu_0\epsilon_0 - \bigg(\frac{m\pi}{a}\bigg)^2 - \bigg(\frac{n\pi}{b}\bigg)^2}\\ $

c)

$ H_z(x,y,z) = H_z^0(x,y)e^{-j\beta z} \hspace{0.5cm}TE \\ $

BCs: $ \frac{\delta H_z}{\delta x}|_{x=0} = 0\hspace{0.5cm} \frac{\delta H_z}{\delta y}|_{y=0} = 0 \\ \frac{\delta H_z}{\delta x}|_{x=a} = 0\hspace{0.5cm} \frac{\delta H_z}{\delta y}|_{y=b} = 0 \\ \bar{H}_z = H_0 \cos\bigg(\frac{m\pi x}{a}\bigg)\cos\bigg(\frac{n\pi y}{b}\bigg)\cos(\omega t - \beta z) \\ $

d)

$ \omega_1 < 2\pi f_c<\omega_2\\ E_0 \cos(\omega_1t)\cos(\omega_2t) = \frac {E_0}{2}\{\cos[(\omega_1-\omega_2)t] + \cos[(\omega_1+\omega_2)t]\}\\ $

$ |\omega_1-\omega_2| =|9\pi\cdot10^9| \hspace{0.5cm}|\omega_1+\omega_2| = 29\pi\cdot10^9 \to $ both will pass through; no affect on the modulation frequency



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett