Line 13: Line 13:
 
<br> '''Solution: ''' <br>
 
<br> '''Solution: ''' <br>
 
The conditions for a chromosome from H to be destroyed are:
 
The conditions for a chromosome from H to be destroyed are:
 +
 
1. It is chosen for crossover.  Probability = <math>\frac{1}{2}</math>.
 
1. It is chosen for crossover.  Probability = <math>\frac{1}{2}</math>.
 +
 
2. The crossover position is not the last symbol.  Otherwise only the last symbol can potentially change and the chromosome will still be in schema H.  Probability = <math>\frac{5}{6}</math>.
 
2. The crossover position is not the last symbol.  Otherwise only the last symbol can potentially change and the chromosome will still be in schema H.  Probability = <math>\frac{5}{6}</math>.
 +
 
3. The other chromosome to crossover has a structure such that the chromosome from H will be destroyed after crossover.  For example: if the other chromosome is * * * * * 1 *.  This probability cannot be determined from the given information, as it depends on the distribution of other chromosomes.  Therefore it has an upperbound of 1.
 
3. The other chromosome to crossover has a structure such that the chromosome from H will be destroyed after crossover.  For example: if the other chromosome is * * * * * 1 *.  This probability cannot be determined from the given information, as it depends on the distribution of other chromosomes.  Therefore it has an upperbound of 1.
  

Revision as of 15:40, 23 January 2015


QE2013_AC-3_ECE580-1

Part 1,2,3,4,5

(i)
Solution:
The conditions for a chromosome from H to be destroyed are:

1. It is chosen for crossover. Probability = $ \frac{1}{2} $.

2. The crossover position is not the last symbol. Otherwise only the last symbol can potentially change and the chromosome will still be in schema H. Probability = $ \frac{5}{6} $.

3. The other chromosome to crossover has a structure such that the chromosome from H will be destroyed after crossover. For example: if the other chromosome is * * * * * 1 *. This probability cannot be determined from the given information, as it depends on the distribution of other chromosomes. Therefore it has an upperbound of 1.

A chromosome from H is destroyed if and only if the 3 conditions above all occur. Therefore

$ P(destroyed)\le \frac{1}{2} \times \frac{5}{6} \times 1 = \frac{5}{12} $

The upper bound is $ \frac{5}{12} $


(ii)
Solution:

      Final Range: 1.0; Initial Range: 20.
      $  \frac{2}{F_{N+1}} \le \frac{1.0}{20} $, or $  F_{N+1} \ge 40 $ 
      So, N + 1 = 9
      Therefore, the minimal iterations is N-1 or 7.


Solution 2:

Since the final range is $ 1.0 $ and the initial range is $ 20 $, we can say $ \frac{2}{F_{N+1}} \le \frac{1.0}{20} or equivalently F_{N+1}} \ge 40 $ From the inequality, we get $ F_{N+1} \ge 40 , so N+1=9 $. Therefore the minimum number of iteration is N-1=7




$ \color{blue}\text{Related Problem: } $ $ \text{Find the final uncertainty range using the Fibonacci method after 6 iterations } $ $ \text{Assume the last step has the form: } 1-\rho_{N-1}=\frac{F_2}{F_3}=\frac{2}{3} \text{The initial range is 10} $


Solution: $ \text{The reduction factor is } \frac{F_{2}}{F_{7+1}} =\frac{1}{34} \text{, So the final range is } 10 \frac{F_{2}}{F_{7+1}}= \frac{5}{17} $


Back to QE2013 AC-3 ECE580

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva