(Energy)
(Signal)
Line 1: Line 1:
 
== Signal ==
 
== Signal ==
  
<math>f(t) = \sin^2(t)</math>
+
<math> f(t) = \sin^2(t) </math>
  
 
== Energy ==
 
== Energy ==

Revision as of 13:25, 2 September 2008

Signal

$ f(t) = \sin^2(t) $

Energy

$ E = \int_{t_1}^{t_2}\!|f(t)|^2\ dt $

$ E = \int_{t_1}^{t_2}\!|\sin^2(t)|^2\ dt $

$ E = \int_{0}^{2\pi}\!|\sin^4(t)|\ dt $

Since $ \sin^2(t) = \frac{1-\cos(2t)}{2} $

$ E = \frac{1}{4}\int_0^{2\pi}(1-\cos(2t))^2 $

$ E = \frac{1}{4}\int_0^{2\pi}(1-2\cos(2t)+\cos^2(2t)) $

$ E = \frac{1}{4}[1]^{2\pi}_{0} - \frac{1}{4}[sin(2t)]^{2\pi}_{0} + \frac{1}{4}\int_0^{2\pi}(\cos^2(2t)) $

$ E = \frac{1}{2}\pi - 0 + \frac{1}{4}\int_0^{2\pi}(\cos^2(2t)) $

Since $ \cos^2(2t) = \frac{1+\cos(4t)}{2} $

$ E = \frac{1}{2}\pi + \frac{1}{8}\int_0^{2\pi}(1+\cos(4t)) $

$ E = \frac{1}{2}\pi + \frac{1}{8}[1]^{2\pi}_{0} + \frac{1}{32}[\sin(4t)]^{2\pi}_{0} $

$ E = \frac{1}{2}\pi + \frac{1}{8}(2\pi) + 0 $

$ E = \frac{1}{2}\pi + \frac{1}{4}\pi $

$ E = \frac{3}{4}\pi $

Average Power

More to come ....

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva