Line 3: Line 3:
 
Question:
 
Question:
  
Can anyone fill in the blanks on the last problem (23) Professor Bell worked in class today?
+
For problem 1 on the practice problems, is the reason the answer is D is because det(A) has infinitely many solutions?
I follow up to the u(x,t) = 1/2(sin2x)(cos2t) + ...... Where did the 1/2(sin2x)(cos2t) come from?
+
 
 +
Answer:
 +
 
 +
No, that's not the reason.  3x3 matrices
 +
form a vector space, so the question as
 +
to whether or not the set of 3x3 matrices
 +
A  such that  det(A)=0  is a vector space
 +
is asking if this set is a subspace.  There
 +
are only two things to check for the subspace
 +
condtion:
 +
 
 +
1. If v_1 and v_2 are in the set, is their sum
 +
in there too?
 +
 
 +
2. If  v  is in the set, is  cv  also in for
 +
any constant  c?
 +
 
 +
Matrices with zero determinant satisfy 2, but
 +
not 1.  It is pretty easy to come up with
 +
two matrices that fail.  Let's see ...
 +
 
 +
1 0 0
 +
0 1 0
 +
0 0 0
 +
 
 +
and
 +
 
 +
0 0 0
 +
0 0 0
 +
0 0 1
 +
 
 +
for example.
 +
 
 +
Question:
 +
 
 +
Can anyone fill in the blanks on the last problem (23) Professor Bell
 +
worked in class today?
 +
 
 +
I follow up to the u(x,t) = 1/2(sin2x)(cos2t) + ......
 +
 
 +
Where did the 1/2(sin2x)(cos2t) come from?
  
 
Answer:
 
Answer:
Line 21: Line 61:
 
that goes with  sin 2x.  (The  B_n coefficients are
 
that goes with  sin 2x.  (The  B_n coefficients are
 
zero because there is zero initial velocity.)
 
zero because there is zero initial velocity.)
 +
 +
The part of this problem that makes the final answer
 +
so short and sweet is that  cos pi/2 =0,  cos 3 pi/2 =0,
 +
etc. ,  cos (odd) pi/2 =0  makes all those terms in
 +
the infinite sum go away.
  
 
Question:
 
Question:

Revision as of 10:09, 12 December 2010

Work area for Practice Final Exam questions

Question:

For problem 1 on the practice problems, is the reason the answer is D is because det(A) has infinitely many solutions?

Answer:

No, that's not the reason. 3x3 matrices form a vector space, so the question as to whether or not the set of 3x3 matrices A such that det(A)=0 is a vector space is asking if this set is a subspace. There are only two things to check for the subspace condtion:

1. If v_1 and v_2 are in the set, is their sum in there too?

2. If v is in the set, is cv also in for any constant c?

Matrices with zero determinant satisfy 2, but not 1. It is pretty easy to come up with two matrices that fail. Let's see ...

1 0 0 0 1 0 0 0 0

and

0 0 0 0 0 0 0 0 1

for example.

Question:

Can anyone fill in the blanks on the last problem (23) Professor Bell worked in class today?

I follow up to the u(x,t) = 1/2(sin2x)(cos2t) + ......

Where did the 1/2(sin2x)(cos2t) come from?

Answer:

When we did the method of separation of variables to solve the string problem, we got solutions of the form

X_n(x) T_n(t).

Then we took linear combinations and realized what the coefficients had to be from plugging in the initial conditions.

The cos 2t term is the T(t) part of the solution that goes with sin 2x. (The B_n coefficients are zero because there is zero initial velocity.)

The part of this problem that makes the final answer so short and sweet is that cos pi/2 =0, cos 3 pi/2 =0, etc. , cos (odd) pi/2 =0 makes all those terms in the infinite sum go away.

Question:

Can someone explain the purpose of the infinite sum 1/n^2 in problem 30? I understand how to use the Parseval's identity, but that last term in the problem statement is really confusing me.

Answer:

When you square the coefficients of the Fourier series, you get four times the sum of 1/n^2.

Question:

Has anyone had any success with Problem 15? I keep solving this on and getting the solution A. I know I'm not doing it correctly. Any hints?

Answer: Your e^-2t term should be e^-2(t-1).

(Recall L(u(t-a)f(t-a))=e^-as*F(s)

Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett