Line 6: | Line 6: | ||
---- | ---- | ||
− | Question | + | Midterm 1 Spring 2009 Question 3 |
− | + | a) <math>H(w) = \frac{1}{3}[1 + e^{-jw} + e^{-j2w}]</math> | |
− | + | b) <math>G(w) = rect(w\frac{3}{\pi})</math> | |
+ | |||
+ | <math>A(w) = \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{w-2\pi k}{6})</math> | ||
+ | |||
+ | <math>B(w) = A(w)H(w) = \frac{1}{3}[1 + e^{-jw} + e^{-j2w}] \cdot \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{w-2\pi k}{6})</math> | ||
+ | |||
+ | <math>C(w) = B(6w) = \frac{1}{3}[1 + e^{-j(6w)} + e^{-j2(6w)}] \cdot \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{6w-2\pi k}{6})</math> | ||
+ | |||
+ | <math>F(w) = C(w)G(w) = \frac{1}{3}[1 + e^{-j(6w)} + e^{-j2(6w)}] \cdot\frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{6w-2\pi k}{6}) \cdot rect(w\frac{3}{\pi})</math> | ||
+ | |||
+ | Is this correct? | ||
---- | ---- |
Revision as of 15:18, 30 September 2010
Ask your questions here!
Possible formula sheet for exam 1 Add things or suggest items? Side note: the formula sheet on the practice exam seems to be suitable. Will we see something similar?
Midterm 1 Spring 2009 Question 3
a) $ H(w) = \frac{1}{3}[1 + e^{-jw} + e^{-j2w}] $
b) $ G(w) = rect(w\frac{3}{\pi}) $
$ A(w) = \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{w-2\pi k}{6}) $
$ B(w) = A(w)H(w) = \frac{1}{3}[1 + e^{-jw} + e^{-j2w}] \cdot \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{w-2\pi k}{6}) $
$ C(w) = B(6w) = \frac{1}{3}[1 + e^{-j(6w)} + e^{-j2(6w)}] \cdot \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{6w-2\pi k}{6}) $
$ F(w) = C(w)G(w) = \frac{1}{3}[1 + e^{-j(6w)} + e^{-j2(6w)}] \cdot\frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{6w-2\pi k}{6}) \cdot rect(w\frac{3}{\pi}) $
Is this correct?
Does anyone know what the trick is for doing 1A and 1c? I know there is a trick because doing integration by parts is just too damn long.