Line 11: Line 11:
  
 
In #3, what will be a good starting point? I am having difficulty proceeding through the problem.
 
In #3, what will be a good starting point? I am having difficulty proceeding through the problem.
 +
 +
--[[User:Rrichmo|Rrichmo]] 20:15, 10 March 2010 (UTC)
 +
 +
What I did was write out the sequence (Xn) to notice that (Xn+1) (the next element in the sequence) is equal to 1 + 1/Xn (this was not intuitive to me). Knowing that both (Xn) and (Xn+1) equal the same limit you can set them equal to each other like in example 3.4.3, then solve.
 +
 +
----

Revision as of 16:15, 10 March 2010

To ask a new question, add a line and type in your question. You can use LaTeX to type math. Here is a link to a short LaTeX tutorial.

To answer a question, open the page for editing and start typing below the question...

go back to the Discussion Page


In #5, I'm having trouble figuring out how to prove that sequence $ Z $ is bounded in order to use Bolzano-Weierstrass Theorem and Theorem 3.4.9 to prove the necessary and sufficient conditions. I know that since both sequences $ X $ and $ Y $ are convergent that they are bounded, but I can't quite figure out how to use this information to prove that $ Z $ is bounded.


In #3, what will be a good starting point? I am having difficulty proceeding through the problem.

--Rrichmo 20:15, 10 March 2010 (UTC)

What I did was write out the sequence (Xn) to notice that (Xn+1) (the next element in the sequence) is equal to 1 + 1/Xn (this was not intuitive to me). Knowing that both (Xn) and (Xn+1) equal the same limit you can set them equal to each other like in example 3.4.3, then solve.


Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva