Line 6: Line 6:
 
Let <math>x\in \mathbb{R}^n</math>.   
 
Let <math>x\in \mathbb{R}^n</math>.   
  
'''Case 1''', <math>\exists K\subset \mathbb{R}^n, K </math> compact, and<math>\int_kf=\infty</math>.   
+
'''Case 1''', <math>\exists K\subset \mathbb{R}^n, K </math> compact, and<math>\int_Kf=\infty</math>.   
Choose a cube <math>Q\supseteq K</math> with <math>|Q|<\infty </math> which is possible since <math>K</math> compact implies <math>K </math> bounded.
+
Choose a cube <math>Q\supseteq K</math> with <math>|Q|<\infty </math> which is possible since <math>K</math> compact implies <math>K </math> bounded.  WLOG <math>x</math> is the center of <math>Q.</math>
 +
Then <math>f^*(x)\geq\dfrac{\int_Qf}{|Q|} \geq \dfrac{\int_Kf}{|Q|}=\infty</math>, so our result holds on <math>  \{x|\exists K s.t. \intKf=\infty \} </math>.

Revision as of 14:57, 9 July 2008

Recall if $ f\in L^1_{loc}, $ the result for #3 a follows from Lebesgue differentiation theorem.

Next if $ f\notin L^1_{loc} $ consider the following: WLOG $ f\geq 0 $ by replacing $ f $ with $ |f|. $

Let $ x\in \mathbb{R}^n $.

Case 1, $ \exists K\subset \mathbb{R}^n, K $ compact, and$ \int_Kf=\infty $. Choose a cube $ Q\supseteq K $ with $ |Q|<\infty $ which is possible since $ K $ compact implies $ K $ bounded. WLOG $ x $ is the center of $ Q. $ Then $ f^*(x)\geq\dfrac{\int_Qf}{|Q|} \geq \dfrac{\int_Kf}{|Q|}=\infty $, so our result holds on $ \{x|\exists K s.t. \intKf=\infty \} $.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood