(New page: <math> V_B = V_0 + I_{C(Q)} R_E </math> <math>V_{CC} - R_1( I_B + I_{R_2} ) = V_B </math> <math>I_B = \frac{\beta}{I_{C(Q)}}</math> & <math> I_{R_2} = \frac{V_B}{R_2} </math> Substitute...)
 
 
Line 1: Line 1:
<math> V_B = V_0 + I_{C(Q)} R_E </math>
+
Start with initial estimation of <math>V_B</math>
 +
:<math> V_B = V_0 + I_{C(Q)} \times R_E </math>
  
<math>V_{CC} - R_1( I_B + I_{R_2} ) = V_B </math>
+
Then examine the circuit to create this equation for <math>V_B</math>. This equation says that the voltage at the base will be <math>V_{CC}</math> minus the voltage dropped across <math>R_1</math>
  
<math>I_B = \frac{\beta}{I_{C(Q)}}</math> & <math> I_{R_2} = \frac{V_B}{R_2} </math>
+
'''(1)''' &nbsp;&nbsp;&nbsp;<math>V_B = V_{CC} - R_1( I_B + I_{R_2} ) </math>
  
Substitute:
+
The base current for the desired Q is derived from the relationship between <math>\beta</math> and <math>I_C</math>
  
<math>V_{CC} -  (\frac{R_1 \beta}{I_{C(Q)}} + \frac{V_B}{R_2}) = V_B </math>
+
'''(2)''' &nbsp;&nbsp;&nbsp;<math>I_B = \frac{I_{C(Q)}}{\beta}</math>
  
Rearrange:
+
From a simple application of Ohm's law we find <math>I_{R_2}</math>
  
<math>V_{CC} - V_B = \frac{R_1 \beta}{I_{C(Q)}} +  \frac{R_1 V_B}{R_2} </math>
+
'''(3)''' &nbsp;&nbsp;&nbsp;<math> I_{R_2} = \frac{V_B}{R_2} </math>
  
<math>V_{CC} - V_B -  \frac{R_1 \beta}{I_{C(Q)}} =  \frac{R_1 V_B}{R_2} </math>
+
Substituting equations '''(2)''' and '''(3)''' into '''(1)''' yields:
  
 +
:<math>V_{CC} -  R_1 \Bigg(\frac{I_{C(Q)}}{ \beta} + \frac{V_B}{R_2}\Bigg) = V_B </math>
  
 +
Solve for <math>R_2</math>:
  
<math>R_2 = \frac{R_1 V_B}{V_{CC} - V_B -  \frac{R_1 \beta}{I_{C(Q)}}} </math>
+
:<math>V_{CC} - V_B =  \frac{R_1 I_{C(Q)}}{\beta} +  \frac{R_1 V_B}{R_2} </math>
 +
 
 +
:<math>V_{CC} - V_B -  \frac{R_1 I_{C(Q)}}{\beta} =  \frac{R_1 V_B}{R_2} </math>
 +
 
 +
 
 +
 
 +
'''(4)''' &nbsp;&nbsp;&nbsp;<math>R_2 = \frac{R_1 V_B}{V_{CC} - V_B -  \frac{R_1 I_{C(Q)}}{\beta}} </math>
 +
 
 +
Now we have the information we need to satisfy the limitation on <math> R_1 || R_2 </math> must be larger than some value X
 +
 
 +
:<math> X = \Bigg(\frac{1}{R_1} + \frac{1}{R_2}\Bigg)^{-1}</math>
 +
 
 +
Substitute '''(4)''' into the equation:
 +
 
 +
:<math> X = \Bigg(\frac{1}{R_1} + \frac{V_{CC} - V_B -  \frac{R_1 I_{C(Q)}} {\beta} }{R_1 V_B} \Bigg)^{-1}</math>
 +
 
 +
Then do some intense algebra and solve for <math>R_1</math>
 +
 
 +
:<math> R_1 = \frac{\frac{V_{CC}}{V_B}}{\frac{1}{X}+\frac{I_{C(Q)}}{\beta V_B}}</math>

Latest revision as of 23:18, 31 October 2008

Start with initial estimation of $ V_B $

$ V_B = V_0 + I_{C(Q)} \times R_E $

Then examine the circuit to create this equation for $ V_B $. This equation says that the voltage at the base will be $ V_{CC} $ minus the voltage dropped across $ R_1 $

(1)    $ V_B = V_{CC} - R_1( I_B + I_{R_2} ) $

The base current for the desired Q is derived from the relationship between $ \beta $ and $ I_C $

(2)    $ I_B = \frac{I_{C(Q)}}{\beta} $

From a simple application of Ohm's law we find $ I_{R_2} $

(3)    $ I_{R_2} = \frac{V_B}{R_2} $

Substituting equations (2) and (3) into (1) yields:

$ V_{CC} - R_1 \Bigg(\frac{I_{C(Q)}}{ \beta} + \frac{V_B}{R_2}\Bigg) = V_B $

Solve for $ R_2 $:

$ V_{CC} - V_B = \frac{R_1 I_{C(Q)}}{\beta} + \frac{R_1 V_B}{R_2} $
$ V_{CC} - V_B - \frac{R_1 I_{C(Q)}}{\beta} = \frac{R_1 V_B}{R_2} $


(4)    $ R_2 = \frac{R_1 V_B}{V_{CC} - V_B - \frac{R_1 I_{C(Q)}}{\beta}} $

Now we have the information we need to satisfy the limitation on $ R_1 || R_2 $ must be larger than some value X

$ X = \Bigg(\frac{1}{R_1} + \frac{1}{R_2}\Bigg)^{-1} $

Substitute (4) into the equation:

$ X = \Bigg(\frac{1}{R_1} + \frac{V_{CC} - V_B - \frac{R_1 I_{C(Q)}} {\beta} }{R_1 V_B} \Bigg)^{-1} $

Then do some intense algebra and solve for $ R_1 $

$ R_1 = \frac{\frac{V_{CC}}{V_B}}{\frac{1}{X}+\frac{I_{C(Q)}}{\beta V_B}} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett