Line 2: Line 2:
 
(1) <math>\frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega)</math>
 
(1) <math>\frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega)</math>
  
(2) <math>\int_{-\infty}{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega)</math>
+
(2) <math>\int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega)</math>

Revision as of 19:15, 8 October 2008

Differentiation/Integration

(1) $ \frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega) $

(2) $ \int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett