Line 20: | Line 20: | ||
<math>=\frac{1}{\pi k}(\frac{e^{jk\frac{\pi}{2}}-e^{-jk\frac{\pi}{2}}}{2j})</math> | <math>=\frac{1}{\pi k}(\frac{e^{jk\frac{\pi}{2}}-e^{-jk\frac{\pi}{2}}}{2j})</math> | ||
+ | |||
+ | <math>=\frac{1}{\pi k}sin(\frac{\pi}{2}k)</math> |
Revision as of 18:46, 8 October 2008
Test Problem 4
$ a_{k} = \frac{1}{T} \int_{0}^{T}x(t)e^{-jk\omega _{o}t}dt $
From the problem statement we know that T=4
$ = \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}t}dt $
Knowing that T=4 we can visualize the periodic signal in the range $ 0 \leq t \leq 4 $. x(t) = 1 for $ 0 \leq t \leq 1 $ and $ 3 \leq t \leq 4 $. Otherwise, x(t) = 0. Therefore:
$ = \frac{1}{4} \int_{0}^{1}e^{-jk\frac{\pi}{2}t}dt + \frac{1}{4} \int_{3}^{4}e^{-jk\frac{\pi}{2}t}dt $
$ = \frac{1}{4}\frac{j}{\frac{\pi}{2}k}e^{-jk\frac{\pi}{2}t}|_{0}^{1} + \frac{1}{4}\frac{j}{\frac{\pi}{2}k}e^{-jk\frac{\pi}{2}t}|_{3}^{4} $
$ =\frac{j}{2\pi k}(e^{-jk\frac{\pi}{2}} - 1 + e^{-jk2\pi} - e^{-jk\frac{3\pi}{2}}) $
$ =\frac{j}{2\pi k}(e^{-jk\frac{\pi}{2}} - 1 + 1 - e^{-jk\frac{4\pi}{2}}e^{jk\frac{\pi}{2}}) $
$ =\frac{j}{2\pi k}(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}) $
$ =\frac{1}{\pi k}(\frac{e^{jk\frac{\pi}{2}}-e^{-jk\frac{\pi}{2}}}{2j}) $
$ =\frac{1}{\pi k}sin(\frac{\pi}{2}k) $