Line 5: Line 5:
 
<math>h[n] = \delta[n-5] + \delta[n-3]\,</math>
 
<math>h[n] = \delta[n-5] + \delta[n-3]\,</math>
  
Then we find the frequency response:<br><br>
+
Then we find the frequency response:
 +
 
 
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\,</math>
 
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\,</math>
  
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} \,</math>
+
find m value to make the value inside the bracket zero
 +
 
 +
m = -5 for the first set and 3 for the second set
 +
 
 +
<math>F(z) = e^{-5j\omega} + e^{3j\omega} \,</math>
 +
 
 +
 
  
 
=Compute the response of your system to the signal you defined in Question 1 using H(z) and the Fourier series coefficients of your signal=
 
=Compute the response of your system to the signal you defined in Question 1 using H(z) and the Fourier series coefficients of your signal=

Revision as of 08:45, 26 September 2008

Obtain the input impulse response h[n] and the system function H(z) of your system

Defining a DT LTI: $ y[n] = x[n+5] + x[n-3]\, $
So, we have the unit impulse response: $ h[n] = \delta[n-5] + \delta[n-3]\, $

Then we find the frequency response:

$ F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\, $

find m value to make the value inside the bracket zero

m = -5 for the first set and 3 for the second set

$ F(z) = e^{-5j\omega} + e^{3j\omega} \, $


Compute the response of your system to the signal you defined in Question 1 using H(z) and the Fourier series coefficients of your signal

Alumni Liaison

EISL lab graduate

Mu Qiao