(New page: This problem uses the linearity. If we know that: <math>e^{2jt} \to te^{-2jt}</math> and <math>e^{-2jt} \to te^{2jt}</math> <p> Then by rewriting cos(2t) as <math>\frac{e^{2jt} + e^{-2jt}}...)
 
 
Line 3: Line 3:
 
<math>e^{2jt} \to te^{-2jt}</math> and <math>e^{-2jt} \to te^{2jt}</math> <p>
 
<math>e^{2jt} \to te^{-2jt}</math> and <math>e^{-2jt} \to te^{2jt}</math> <p>
 
Then by rewriting cos(2t) as <math>\frac{e^{2jt} + e^{-2jt}}{2}</math> then since the system in linear,
 
Then by rewriting cos(2t) as <math>\frac{e^{2jt} + e^{-2jt}}{2}</math> then since the system in linear,
take <math>\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt}</math> through the system to get <math>\frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt}</math> which is the same as <math>t\cos(2t)</math>
+
take <math>\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt}</math> through the system to get <math>\frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt}</math> which is the same as <math>t\cos{(2t)}</math>

Latest revision as of 10:20, 18 September 2008

This problem uses the linearity. If we know that:

$ e^{2jt} \to te^{-2jt} $ and $ e^{-2jt} \to te^{2jt} $

Then by rewriting cos(2t) as $ \frac{e^{2jt} + e^{-2jt}}{2} $ then since the system in linear, take $ \frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} $ through the system to get $ \frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt} $ which is the same as $ t\cos{(2t)} $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison