Line 8: Line 8:
 
The input
 
The input
  
<math>\,x(t)=cos(2t)\,</math>
+
<math>\,x(t)=\cos(2t)\,</math>
  
 
can be rewritten as
 
can be rewritten as
Line 15: Line 15:
  
 
<math>\,x(t)=\frac{1}{2}e^{2jt}+\frac{1}{2}e^{-2jt}\,</math>
 
<math>\,x(t)=\frac{1}{2}e^{2jt}+\frac{1}{2}e^{-2jt}\,</math>
 +
 +
<math>\,x(t)=\frac{1}{2}x_1(t)+\frac{1}{2}x_2(t)\,</math>
 +
 +
 +
Because the system is linear, we can write the response as
 +
 +
<math>\,y(t)=\frac{1}{2}y_1(t)+\frac{1}{2}y_2(t)\,</math>
 +
 +
<math>\,y(t)=\frac{1}{2}te^{-2jt}+\frac{1}{2}te^{2jt}\,</math>
 +
 +
<math>\,y(t)=t(\frac{e^{2jt}+e^{-2jt}}{2})\,</math>
 +
 +
<math>\,y(t)=t\cos(2t)\,</math>

Revision as of 17:41, 17 September 2008

We are told that a system is linear and given inputs

$ \,x_1(t)=e^{2jt}\, $ yields $ \,y_1(t)=te^{-2jt}\, $

$ \,x_2(t)=e^{-2jt}\, $ yields $ \,y_2(t)=te^{2jt}\, $


The input

$ \,x(t)=\cos(2t)\, $

can be rewritten as

$ \,x(t)=\frac{e^{2jt}+e^{-2jt}}{2}\, $

$ \,x(t)=\frac{1}{2}e^{2jt}+\frac{1}{2}e^{-2jt}\, $

$ \,x(t)=\frac{1}{2}x_1(t)+\frac{1}{2}x_2(t)\, $


Because the system is linear, we can write the response as

$ \,y(t)=\frac{1}{2}y_1(t)+\frac{1}{2}y_2(t)\, $

$ \,y(t)=\frac{1}{2}te^{-2jt}+\frac{1}{2}te^{2jt}\, $

$ \,y(t)=t(\frac{e^{2jt}+e^{-2jt}}{2})\, $

$ \,y(t)=t\cos(2t)\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang