(Part(a))
(Part(a))
 
(3 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
 
<math> P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} </math>
 
<math> P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} </math>
 +
  
 
Recall geometric series:
 
Recall geometric series:
  
<math> \sum_{\imath=0}^{\infty} </math>
 
  
for |x| < 1
+
<math> \sum_{\imath=0}^{\infty} x^{\imath}= \frac{1}{1-x}</math>  for |x| < 1
 +
 
 +
 
 +
<math> P(B) = p\sum_{\imath=0}^{\infty} (1-p)^{4\imath} = \frac{p}{1-(1-p)} </math>
 +
 
 +
 
 +
Repeat this for Carol, Ted, and Alice to show that the order of your toss affects your probability of winning.

Latest revision as of 17:09, 9 September 2008

Part(a)

     Show that P(B) > P(C) > P(T) > P(A):

- P(H) = p , 0 < p < 1

$ P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} $


Recall geometric series:


$ \sum_{\imath=0}^{\infty} x^{\imath}= \frac{1}{1-x} $ for |x| < 1


$ P(B) = p\sum_{\imath=0}^{\infty} (1-p)^{4\imath} = \frac{p}{1-(1-p)} $


Repeat this for Carol, Ted, and Alice to show that the order of your toss affects your probability of winning.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva