m
 
(2 intermediate revisions by one other user not shown)
Line 27: Line 27:
 
=Solution 1=
 
=Solution 1=
  
Suppose
+
<math>Var(X)=E(X^2)-E(X)^2</math>
  
<math>A=\left(\begin{array}{cc}
+
First,
a & b\\
+
c & d
+
\end{array} \right)</math>.
+
  
Then the new 2-D random vector can be expressed as
+
<math>E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx</math>
  
<math>Y=\left(\begin{array}{c}Y_1 \\ Y_2\end{array} \right)=A\left(\begin{array}{c}X_i \\ X_j\end{array} \right)=\left(\begin{array}{c}aX_i+bX_j \\ cX_i+dX_j\end{array} \right)</math>
+
Since
  
 +
<math>\begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\
 +
=\int -x^2 de^{-\lambda x}\\
 +
=-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\
 +
=-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\
 +
=-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}
 +
\end{array}</math>,
  
Therefore,
+
We have
  
<math>\begin{array}{l}Cov(Y_1,Y_2)=E[(aX_i+bX_j-E(aX_i+bX_j))(cX_i+dX_j-E(cX_i+dX_j))] \\
+
<math>E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty</math>
=E[(aX_i+bX_j-aE(X_i)-bE(X_j))(cX_i+dX_j-cE(X_i)-dE(X_j))] \\
+
=E[acX_i^2+adX_iX_j-acX_iE(X_i)-adX_iE(X_j)+bcX_iX_j+bdX_j^2-bcX_jE(X_i)\\
+
-bdX_jE(X_j)-acX_iE(X_i)-adX_jE(X_i)+acE(X_i)^2+adE(X_i)E(X_j)\\
+
-bcX_iE(X_j)-bdX_jE(X_j)+bcE(X_i)E(X_j)+bdE(X_i)^2]\\
+
=E(ac(X_i-E(X_i))^2+(ad+bc)(X_i-E(X_i)(X_j-E(X_j))+bd(X_j-E(X_j))^2]\\
+
=(ac)Cov(X_i,X_i)+(ad+bc)Cov(X-i,X_j)+(bd)Cov(X_j,X_j)\\
+
=ac\sigma^2+(ad+bc)\rho\sigma^2+bd\sigma^2
+
\end{array}</math>
+
  
Let the above formula equal to 0 and <math>a=b=d=1</math>, we get <math>c=-1</math>.
+
By L'Hospital's rule, we have
  
Therefore, a solution is
+
<math>\lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0</math>
  
<math>A=\left(\begin{array}{cc}
+
and
1 & 1\\
+
-1 & 1
+
\end{array} \right)</math>.
+
  
 +
<math>\lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0</math>.
  
 +
Therefore,
  
----
+
<math>E(X) = \frac{2}{\lambda^2}</math>.
==Solution 2==
+
  
Assume
+
Then we take a look at <math>E(X)</math>.
  
<math>Y=\left(\begin{array}{c}Y_i \\ Y_j\end{array} \right)=A\left(\begin{array}{c}X_i \\ X_j\end{array} \right)=\left(\begin{array}{c}a_{11}X_i+a_{12}X_j \\ a_{21}X_i+a_{22}X_j\end{array} \right)</math>.
+
<math>E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx</math>
  
Then
+
<math>\begin{array}{l}
 
+
\int x\lambda{e}^{-\lambda{x}}dx\\
<math>\begin{array}{l}E(Y_iY_j)=E[(a_{11}X_i+a_{12}X_j)(a_{21}X_i+a_{22}X_j)]\\
+
=\int xde^(\lambda x)\\
=a_{11}a_{21}\sigma^2+a_{12}a_{22}\sigma^2+(a_{11}a_{21}+a_{22}a_{11})E(X_iX_j)
+
=-xe^{-\lambda x}+\int e^{\lambda x}dx\\
 +
=-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\
 
\end{array}</math>
 
\end{array}</math>
  
For <math>|i-j|\geq1</math>, <math>E(X_i,X_j)=0</math>. Therefore, <math>a_{11}a_{21}+a_{12}a_{22}=0</math>.
+
Similar to the calculation of <math>E(X^2)</math>,
  
One solution can be
+
<math>E(X)=\frac{1}{\lambda}</math>.
  
<math>A=\left(\begin{array}{cc}
+
Therefore,
1 & -1\\
+
1 & 1
+
\end{array} \right)</math>.
+
  
 +
<math>Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2}</math>.
  
<font color="red"><u>'''Critique on Solution 2:'''</u>
+
----
 +
==Solution 2==
  
1. <math>E(Y_iY_j)=0</math> is not the condition for the two random variables to be independent.
+
<math>\begin{align}
 +
E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\
 +
&=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\
 +
&=-(xe^{-\lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\
 +
&=\frac{1}{x}
 +
\end{align}</math>
 +
 
 +
<math>\begin{align}
 +
E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\
 +
&=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\
 +
&=-(x^2e^{-\lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\
 +
&=\frac{2}{x^2}
 +
\end{align}</math>
 +
 
 +
Therefore,
 +
 
 +
<math>Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2}</math>
 +
 
 +
<font color="red"><u>'''Critique on Solution 2:'''</u>
  
2. "For <math>|i-j|\geq1</math>, <math>E(X_i,X_j)=0</math>" is not supported by the given conditions.
+
Solution 2 is correct. In addition, calculating <math>E(X)</math> first is better since the result can be used in calculating <math>E(X^2)</math>.
  
 
</font>
 
</font>

Latest revision as of 21:02, 5 August 2018


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2013



Part 3

Let $ X $ be an exponential random variable with parameter $ \lambda $, so that $ f_X(x)=\lambda{exp}(-\lambda{x})u(x) $. Find the variance of $ X $. You must show all of your work.


Solution 1

$ Var(X)=E(X^2)-E(X)^2 $

First,

$ E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx $

Since

$ \begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\ =\int -x^2 de^{-\lambda x}\\ =-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x} \end{array} $,

We have

$ E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty $

By L'Hospital's rule, we have

$ \lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0 $

and

$ \lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0 $.

Therefore,

$ E(X) = \frac{2}{\lambda^2} $.

Then we take a look at $ E(X) $.

$ E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx $

$ \begin{array}{l} \int x\lambda{e}^{-\lambda{x}}dx\\ =\int xde^(\lambda x)\\ =-xe^{-\lambda x}+\int e^{\lambda x}dx\\ =-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\ \end{array} $

Similar to the calculation of $ E(X^2) $,

$ E(X)=\frac{1}{\lambda} $.

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2} $.


Solution 2

$ \begin{align} E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\ &=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\ &=-(xe^{-\lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\ &=\frac{1}{x} \end{align} $

$ \begin{align} E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\ &=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\ &=-(x^2e^{-\lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\ &=\frac{2}{x^2} \end{align} $

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2} $

Critique on Solution 2:

Solution 2 is correct. In addition, calculating $ E(X) $ first is better since the result can be used in calculating $ E(X^2) $.


Back to QE CS question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett