(Removing all content from page)
 
(46 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Category:slecture]]
 
[[Category:ECE662Spring2014Boutin]]
 
[[Category:ECE]]
 
[[Category:ECE662]]
 
[[Category:pattern recognition]] 
 
  
<center><font size= 4>
 
Basics and Examples of Principal Component Analysis (PCA)
 
</font size>
 
 
A [https://www.projectrhea.org/learning/slectures.php slecture] by Sujin Jang
 
 
Partly based on the [[2014_Spring_ECE_662_Boutin|ECE662 Spring 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].
 
</center>
 
----
 
----
 
 
== '''Introduction''' ==
 
Principal Component Analysis (PCA) is one of famous techniqeus for dimension reduction, feature extraction, and data visualization. In general, PCA is defined by a transformation of a high dimensional vector space into a low dimensional space. Let's consider visualization of 10-dim data. It is barely possible to effectively show the shape of such high dimensional data distribution. PCA provides an efficient way to reduce the dimensionalty (i.e., from 10 to 2), so it is much easier to visualize the shape of data distribution. PCA is also useful in the modeling of robust classifier where considerably small number of high dimensional training data is provided. By reducing the dimensions of learning data sets, PCA provides an effective and efficient method for data description and classification.
 
 
This lecture is designed to provide a mathematical background of PCA and its applications. First, fundamentals of linear algebra is introduced that will be used in PCA. Technical procedure of PCA will be provided to aid understanding of practical implementation of PCA. Based on the procedure, several examples of PCA will be given in dimension reduction and visualization.
 
 
----
 
== '''Eigenvectors and Eigenvalues''' ==
 
<math>\vec{x}\in\mathbb{R}^{n}</math>
 
 
<math>D(\lambda)=det\left(A-\lambda I\right)</math>
 
 
<math>A=\left[\begin{matrix}-5 & 2\\
 
2 & -2
 
\end{matrix}\right].</math>
 
----
 
== '''Technical Procedure of PCA''' ==
 
----
 
== '''Examples''' ==
 
----
 
==[[slecture_title_of_slecture_review|Questions and comments]]==
 
 
If you have any questions, comments, etc. please post them on [[PCA_Theory_Examples_Comment|this page]].
 
----
 
[[2014_Spring_ECE_662_Boutin|Back to ECE662, Spring 2014]]
 

Latest revision as of 11:46, 13 May 2014

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood