(New page: Category:Set Theory Category:Math == Theorem == Let <math>\{E_{\alpha}\}</math> be a (finite or infinite) collection of sets <math>E_{\alpha}</math>. Then, <br/> <center><math>(...)
 
 
Line 34: Line 34:
 
<center><math>(\bigcup_{\alpha}E_{\alpha})^C = \bigcap_{\alpha}(E_{\alpha}^C)</math></center>
 
<center><math>(\bigcup_{\alpha}E_{\alpha})^C = \bigcap_{\alpha}(E_{\alpha}^C)</math></center>
 
<math>\blacksquare</math>
 
<math>\blacksquare</math>
 +
 +
 +
----
 +
 +
== References ==
 +
 +
* W. Rudin, "Basic Topology" in "Principles of Mathematical Analysis", 3rd Edition, McGraw-Hill Inc. ch 2, pp 33.
  
  
 
----
 
----
 
[[Proofs_mhossain|Back to list of all proofs]]
 
[[Proofs_mhossain|Back to list of all proofs]]

Latest revision as of 11:47, 6 October 2013


Theorem

Let $ \{E_{\alpha}\} $ be a (finite or infinite) collection of sets $ E_{\alpha} $. Then,

$ (\bigcup_{\alpha}E_{\alpha})^C = \bigcap_{\alpha}(E_{\alpha}^C) $



Proof

$ \begin{align} x\in (\bigcup_{\alpha}E_{\alpha})^C &\Rightarrow x \notin \bigcup_{\alpha}E_{\alpha} \\ &\Rightarrow x \notin E_{\alpha} \;\forall \alpha \\ &\Rightarrow x \in E_{\alpha}^C \;\forall\alpha \\ &\Rightarrow x \in\bigcap E_{\alpha}^C \\ &\Rightarrow (\bigcup_{\alpha}E_{\alpha})^C \subset \bigcap_{\alpha}(E_{\alpha}^C) \end{align} $


Conversely,

$ \begin{align} x \in \bigcap_{\alpha}(E_{\alpha}^C) &\Rightarrow x \in E_{\alpha}^C\;\forall\alpha \\ &\Rightarrow x \notin E_{\alpha}\; \forall \alpha \\ &\Rightarrow x \notin\bigcup_{\alpha}E_{\alpha} \\ &\Rightarrow x \in \bigcup_{\alpha}E_{\alpha})^C \\ &\Rightarrow \bigcap_{\alpha}(E_{\alpha}^C)\subset (\bigcup_{\alpha}E_{\alpha})^C \end{align} $

Therefore,

$ (\bigcup_{\alpha}E_{\alpha})^C = \bigcap_{\alpha}(E_{\alpha}^C) $

$ \blacksquare $



References

  • W. Rudin, "Basic Topology" in "Principles of Mathematical Analysis", 3rd Edition, McGraw-Hill Inc. ch 2, pp 33.



Back to list of all proofs

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang