(36 intermediate revisions by 6 users not shown)
Line 6: Line 6:
 
[[Category:discrete time Fourier transform]]
 
[[Category:discrete time Fourier transform]]
  
= [[:Category:Problem_solving|Practice Problem]] on Discrete-time Fourier transform computation =
+
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Discrete-time Fourier transform computation
 +
 
 +
</center>
 +
----
 +
==Question==
 
Compute the discrete-time Fourier transform of the following signal:
 
Compute the discrete-time Fourier transform of the following signal:
  
Line 18: Line 26:
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
  
'''No need to write your name: we can find out who wrote what by checking the history of the page.'''
 
 
----
 
----
 
===Answer 1===
 
===Answer 1===
 +
<math>x[n]=\sin \left( \frac{2 \pi}{100} \right)</math>
  
  
<math>x[n]=\sin \left( \frac{2pi}{100} \right)</math>
+
<math>x[n] = \frac{1}{2j}  \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)</math>
  
 +
<math>X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}</math>
  
<math>x[n] = \frac{1}{2j} e^{\frac{j2 \pi}{100n})-e^{- \frac{j2 \pi}{100n}}</math>
+
<math>X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)</math>
  
<math>X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}</math>
 
  
<math>X_(\omega) = \sum_{n=-\infty}^{+\infty} e^{-j2 \pi /100 n} e^{-j\omega n}</math>
+
<math>X_(\omega) = \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right)  by  DTFT  table</math>
 +
 
 +
:<span style="color:green"> Instructor's comment: You need to learn to find the answer without using a table.  Now, I am not sure which table you used, but it must be wrong, since the anwer you obtained is not periodic with period <math>2\pi</math>.</span>
 +
 
 +
:<span style="color:red"> TA's comment: You could rather say, X(ω) equals this from -π to π and it's 2π periodic. </span>
 
===Answer 2===
 
===Answer 2===
Write it here.
+
 
 +
First, write the original function as:
 +
<math>x[n] = \frac{1}{2j}  \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)</math>
 +
 
 +
 
 +
Then, for w = [-pi, pi] (<span style="color:green"> Instructor's comment: You need more justification here.)</span>
 +
 
 +
<math>X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)</math>
 +
 
 +
<math>X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)</math>
 +
 
 +
which is really is:
 +
 
 +
<math>X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)</math>
 +
 
 +
:<span style="color:green"> Instructor's comment: You should make it clear which expressions are valid for all values of <math>\omega</math>, and which expressions are only valid for <math>\omega \in [-\pi, \pi ]</math>.</span>
 
===Answer 3===
 
===Answer 3===
We can set the
+
Xiang Zhang
<math>x[n]=\sin \left( frac{2\pi} \100 \right)</math>
+
  
 +
We can separate <span style="color:green"> (Instructor's comment: separate? Do you mean "write"?)</span>the equation (<span style="color:green"> Instructor's comment: it's not an equation: it's a signal, or a function.)</span> to the following function
  
 +
<math>x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100}  - e^\frac{- j 2 \pi n}{100}  \right)  </math>
 +
 +
Because based on Fourier transform equation,
 +
 +
<math>X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n}</math>
 +
 +
Substitute in x[n]
 +
 +
<math>X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right)</math>
 +
 +
<span style="color:green"> (Instructor's comment: Why write the equation above if you are going to use a FT pair from a table?)</span>
 +
 +
From Discrete Fourier Transform pair,
 +
 +
<math> x[n] = e^{-j\omega_0 n} </math> DTFT to <math> X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right)  </math>
 +
 +
<span style="color:green"> (Instructor's comment: Careful above! The original signal was called x[n]; you can't reuse x[n] for a different signal.)</span>
 +
 +
Hence, the function <span style="color:green"> (Instructor's comment: Function? You mean "DTFT"?.)</span> will be
 +
 +
<math> X_(\omega) =  \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right)  </math>
 +
 +
<span style="color:green"> (Instructor's comment: What is <math>\omega_0</math>?)</span>
 +
 +
<math>x[n]=\sin \left( \frac{2\pi}{100} n \right)</math>
 +
 +
<span style="color:green"> (Instructor's comment: You don't need to re-write the signal.)</span>
 +
----
 
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013]]
 
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013]]

Latest revision as of 11:36, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Discrete-time Fourier transform computation


Question

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= \sin \left( \frac{2 \pi }{100} n \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n]=\sin \left( \frac{2 \pi}{100} \right) $


$ x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right) $

$ X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} $

$ X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right) $


$ X_(\omega) = \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right) by DTFT table $

Instructor's comment: You need to learn to find the answer without using a table. Now, I am not sure which table you used, but it must be wrong, since the anwer you obtained is not periodic with period $ 2\pi $.
TA's comment: You could rather say, X(ω) equals this from -π to π and it's 2π periodic.

Answer 2

First, write the original function as: $ x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right) $


Then, for w = [-pi, pi] ( Instructor's comment: You need more justification here.)

$ X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right) $

$ X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right) $

which is really is:

$ X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right) $

Instructor's comment: You should make it clear which expressions are valid for all values of $ \omega $, and which expressions are only valid for $ \omega \in [-\pi, \pi ] $.

Answer 3

Xiang Zhang

We can separate (Instructor's comment: separate? Do you mean "write"?)the equation ( Instructor's comment: it's not an equation: it's a signal, or a function.) to the following function

$ x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100} - e^\frac{- j 2 \pi n}{100} \right) $

Because based on Fourier transform equation,

$ X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n} $

Substitute in x[n]

$ X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right) $

(Instructor's comment: Why write the equation above if you are going to use a FT pair from a table?)

From Discrete Fourier Transform pair,

$ x[n] = e^{-j\omega_0 n} $ DTFT to $ X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) $

(Instructor's comment: Careful above! The original signal was called x[n]; you can't reuse x[n] for a different signal.)

Hence, the function (Instructor's comment: Function? You mean "DTFT"?.) will be

$ X_(\omega) = \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right) $

(Instructor's comment: What is $ \omega_0 $?)

$ x[n]=\sin \left( \frac{2\pi}{100} n \right) $

(Instructor's comment: You don't need to re-write the signal.)


Back to ECE438 Fall 2013

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett