(5 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
<math>\int_a^bf'(x)\,\mathrm{d}x=f(b)-f(a)</math> | <math>\int_a^bf'(x)\,\mathrm{d}x=f(b)-f(a)</math> | ||
+ | |||
+ | <math>\Gamma(z)=\int_0^\infty t^{z-1}\mathrm{e}^{-t}\,\mathrm{d}t</math> | ||
+ | |||
+ | <math>f^{(n)}(z)=\dfrac{n!}{2\pi\mathrm{i}}\oint_\gamma\dfrac{f(t)}{(t-z)^{n+1}}\,\mathrm{d}t</math> | ||
[[Category:MA181Fall2011Bell]] | [[Category:MA181Fall2011Bell]] |
Latest revision as of 16:39, 24 August 2011
Homework 1 collaboration area
Here is an example of how to input math:
$ \int_0^\pi\sin x\,dx = \left[ -\cos x\right]_0^\pi = -(-1)-(-1)=2 $
How do you compute the derivative of
$ \frac{x^2+1}{3x^4-7}? $
just for testing:
$ \int_a^bf'(x)\,\mathrm{d}x=f(b)-f(a) $
$ \Gamma(z)=\int_0^\infty t^{z-1}\mathrm{e}^{-t}\,\mathrm{d}t $
$ f^{(n)}(z)=\dfrac{n!}{2\pi\mathrm{i}}\oint_\gamma\dfrac{f(t)}{(t-z)^{n+1}}\,\mathrm{d}t $