(10 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
Here is an example of how to input math:
 
Here is an example of how to input math:
  
<math>\int_0^\pi \sin x dx = \left[ -\cos x\right]_0^\pi = -(-1)-(-1)=2</math>
+
<math>\int_0^\pi\sin x\,dx = \left[ -\cos x\right]_0^\pi = -(-1)-(-1)=2</math>
 +
 
 +
How do you compute the derivative of
 +
 
 +
<math>\frac{x^2+1}{3x^4-7}?</math>
 +
 
 +
just for testing:
 +
 
 +
<math>\int_a^bf'(x)\,\mathrm{d}x=f(b)-f(a)</math>
 +
 
 +
<math>\Gamma(z)=\int_0^\infty t^{z-1}\mathrm{e}^{-t}\,\mathrm{d}t</math>
 +
 
 +
<math>f^{(n)}(z)=\dfrac{n!}{2\pi\mathrm{i}}\oint_\gamma\dfrac{f(t)}{(t-z)^{n+1}}\,\mathrm{d}t</math>
  
 
[[Category:MA181Fall2011Bell]]
 
[[Category:MA181Fall2011Bell]]

Latest revision as of 16:39, 24 August 2011

Homework 1 collaboration area

Here is an example of how to input math:

$ \int_0^\pi\sin x\,dx = \left[ -\cos x\right]_0^\pi = -(-1)-(-1)=2 $

How do you compute the derivative of

$ \frac{x^2+1}{3x^4-7}? $

just for testing:

$ \int_a^bf'(x)\,\mathrm{d}x=f(b)-f(a) $

$ \Gamma(z)=\int_0^\infty t^{z-1}\mathrm{e}^{-t}\,\mathrm{d}t $

$ f^{(n)}(z)=\dfrac{n!}{2\pi\mathrm{i}}\oint_\gamma\dfrac{f(t)}{(t-z)^{n+1}}\,\mathrm{d}t $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010