(New page: 2.4 Strong law of large numbers (Borel) Let <math>\left\{ \mathbf{X}_{n}\right\}</math> be a sequence of identically distributed random variables with mean <math>\mu</math> and varianc...)
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
2.4 Strong law of large numbers (Borel)
 
2.4 Strong law of large numbers (Borel)
  
Let <math>\left\{ \mathbf{X}_{n}\right\}</math>  be a sequence of identically distributed random variables with mean <math>\mu</math>  and variance <math>\sigma^{2}</math> , and <math>Cov\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)=E\left[\left(\mathbf{X}_{i}-\mu\right)\left(\mathbf{X}_{j}-\mu\right)\right]=0,\quad i\neq j\text{ : uncorrelated.}</math>  
+
Let <math class="inline">\left\{ \mathbf{X}_{n}\right\}</math>  be a sequence of identically distributed random variables with mean <math class="inline">\mu</math>  and variance <math class="inline">\sigma^{2}</math> , and <math class="inline">Cov\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)=E\left[\left(\mathbf{X}_{i}-\mu\right)\left(\mathbf{X}_{j}-\mu\right)\right]=0,\quad i\neq j\text{ : uncorrelated.}</math>  
  
Then <math>\mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\longrightarrow\left(a.e.\right)\longrightarrow\mu\text{ as }n\longrightarrow\infty.</math>  
+
Then <math class="inline">\mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\longrightarrow\left(a.e.\right)\longrightarrow\mu\text{ as }n\longrightarrow\infty.</math>  
  
 
Proof
 
Proof
  
 
Beyound this course. Require measure theory.
 
Beyound this course. Require measure theory.
 +
 +
----
 +
[[ECE600|Back to ECE600]]
 +
 +
[[ECE 600 Sequences of Random Variables|Back to Sequences of Random Variables]]

Latest revision as of 11:41, 30 November 2010

2.4 Strong law of large numbers (Borel)

Let $ \left\{ \mathbf{X}_{n}\right\} $ be a sequence of identically distributed random variables with mean $ \mu $ and variance $ \sigma^{2} $ , and $ Cov\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)=E\left[\left(\mathbf{X}_{i}-\mu\right)\left(\mathbf{X}_{j}-\mu\right)\right]=0,\quad i\neq j\text{ : uncorrelated.} $

Then $ \mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\longrightarrow\left(a.e.\right)\longrightarrow\mu\text{ as }n\longrightarrow\infty. $

Proof

Beyound this course. Require measure theory.


Back to ECE600

Back to Sequences of Random Variables

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn