(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
== '''Time Shifting Property of Continuous-Time Fourier Series''' ==<br>
+
'''== Time Shifting Property of Continuous-Time Fourier Series ==''' <br>
 
When a time shift is applied to a periodic signal x(t), the period T of the signal is preserved.<br>
 
When a time shift is applied to a periodic signal x(t), the period T of the signal is preserved.<br>
 
The Fourier series coefficients <math>b_{k}</math> of the resulting signal y(t)=x(t-<math>t_{0}</math>) may be expressed as<br>
 
The Fourier series coefficients <math>b_{k}</math> of the resulting signal y(t)=x(t-<math>t_{0}</math>) may be expressed as<br>
Line 5: Line 5:
 
Letting <math>\tau</math>=t-<math>t_{0}</math> in the integral, and noticing that the new variable <math>\tau</math> will also range over<br>
 
Letting <math>\tau</math>=t-<math>t_{0}</math> in the integral, and noticing that the new variable <math>\tau</math> will also range over<br>
 
an interval of duration T, we obtain<br>
 
an interval of duration T, we obtain<br>
<math>\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau+\tau_{0})}d\tau</math><br>
+
<math>\frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau+\tau_{0})}d\tau=e^{-jkw_{0}t_{0}}\frac{1}{T}\int_T x(\tau)e^{-jkw_0\tau}d\tau</math><br>
 +
<math>=e^{-jkw_{0}t_{0}} a_{k} = e^{-jk(2\pi/T)t_{0}} a_{k},</math><br>
 +
where <math>a_{k}</math> is the kth Fourier series coefficient of x(t). That is, if<br>
 +
<math>x(t)\overset{\mathit{FS}}{\leftrightarrow}a_{k}</math><br>
 +
then<br>
 +
<math>x(t-t_{0})\overset{\mathit{FS}}{\leftrightarrow}e^{-jkw_{0}t_{0}}a_{k}=e^{-jk(2\pi/T)t_{0}}a_{k}</math>.<br>

Latest revision as of 03:44, 9 July 2009

== Time Shifting Property of Continuous-Time Fourier Series ==
When a time shift is applied to a periodic signal x(t), the period T of the signal is preserved.
The Fourier series coefficients $ b_{k} $ of the resulting signal y(t)=x(t-$ t_{0} $) may be expressed as
$ b_{k}=\frac{1}{T}\int_T x(t-t_{0})e^{-jk w_{0} t}dt $.
Letting $ \tau $=t-$ t_{0} $ in the integral, and noticing that the new variable $ \tau $ will also range over
an interval of duration T, we obtain
$ \frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau+\tau_{0})}d\tau=e^{-jkw_{0}t_{0}}\frac{1}{T}\int_T x(\tau)e^{-jkw_0\tau}d\tau $
$ =e^{-jkw_{0}t_{0}} a_{k} = e^{-jk(2\pi/T)t_{0}} a_{k}, $
where $ a_{k} $ is the kth Fourier series coefficient of x(t). That is, if
$ x(t)\overset{\mathit{FS}}{\leftrightarrow}a_{k} $
then
$ x(t-t_{0})\overset{\mathit{FS}}{\leftrightarrow}e^{-jkw_{0}t_{0}}a_{k}=e^{-jk(2\pi/T)t_{0}}a_{k} $.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva