| Line 1: | Line 1: | ||
| + | [[Category:problem solving]] | ||
| + | [[Category:ECE301]] | ||
| + | [[Category:ECE]] | ||
| + | [[Category:Fourier transform]] | ||
| + | [[Category:signals and systems]] | ||
| + | == Example of Computation of Fourier transform of a CT SIGNAL == | ||
| + | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
| + | ---- | ||
<math>x(t)=e^{-3t} u(t-3) u(t+3) </math> | <math>x(t)=e^{-3t} u(t-3) u(t+3) </math> | ||
| Line 10: | Line 18: | ||
<math>\frac{e^{-(9 + 3jw)}}{-(3 + jw)} - \frac{e^{(9 + 3jw)}}{-(3 + jw)}</math> | <math>\frac{e^{-(9 + 3jw)}}{-(3 + jw)} - \frac{e^{(9 + 3jw)}}{-(3 + jw)}</math> | ||
| + | |||
| + | ---- | ||
| + | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] | ||
Latest revision as of 12:27, 16 September 2013
Example of Computation of Fourier transform of a CT SIGNAL
A practice problem on CT Fourier transform
$ x(t)=e^{-3t} u(t-3) u(t+3) $
$ X(w) = \int^{\infty}_{- \infty}x(t)e^{-jwt} dt $
$ = \int^{\infty}_{- \infty} e^{-3t} u(t-3) u(t+3) e^{-jwt} dt $
$ = \int^{3}_{-3} e^{-(3 + jw)t} dt $
$ [\frac{e^{-(3 + jw)t}}{-(3 + jw)}]_{-3}^{3} $
$ \frac{e^{-(9 + 3jw)}}{-(3 + jw)} - \frac{e^{(9 + 3jw)}}{-(3 + jw)} $
