(New page: Image:two.jpg)
 
(Example for a linear system)
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:two_ECE301Fall2008mboutin.jpg]]
+
==Linearity==
 +
'''What is a linear system?'''
 +
A linear system is a mathematical model of a system based on the use of a linear operator. A system is called "linear" if for any constants a,b<math>{\in}</math>complex number and for any inputs x1(t) and x2(t) yielding output y1(t),y2(t) respectively the response to a.x1(t)+b.x2(t) is a.y1(t)+b.y2(t).
 +
A more mathematical description would be,
 +
given two valid inputs
 +
 
 +
<math>{x_1(t)}</math>
 +
 
 +
<math>{x_2(t)}</math>
 +
 
 +
and their respective outputs
 +
 
 +
<math>({y_1(t)}=h*{x_1(t)}</math>
 +
 
 +
<math>{y_2(t)}=h*{x_2(t)}</math>
 +
then a linear system must satisfy
 +
 
 +
<math>{a*y_1(t)}+{b*y_2(t)}=H*[{a*x_1(t)+b*y_1(t)}]</math>
 +
 
 +
==Example for a linear system==
 +
Consider,
 +
<math>{x_1(t)=sin(t)}</math>
 +
 
 +
 
 +
<math>{x_2(t)=cos(t)}</math>
 +
 
 +
Let,
 +
  <math>{y_1(t)=tsin(t)}</math>
 +
 
 +
 
 +
  <math>y_2(t)=tcos(t)</math>
 +
 
 +
Now,
 +
 
 +
(1).<math>{ay_1(t)+by_2(t)}={atsin(t)+btcos(t)}</math>
 +
 
 +
And,
 +
(2).<math>{H[{ax_1(t)+bx_2(t)}]}={t{asin(t)+bcos(t)}}={atsin(t)+btcos(t)}</math>
 +
 +
Thus since (1) and (2) are the same the system is linear.
 +
 
 +
==Example for non linear system==
 +
<math>{x_1(t)=t^3}</math>
 +
 
 +
<math>{x_2(t)=sin(t)}</math>
 +
 
 +
<math>{y_1(t)={[x_1(t)]^2}}</math>
 +
 
 +
<math>{y_2(t)={[x_2(t)]^2}}</math>
 +
 
 +
Therefore,
 +
 
 +
(1).<math>{ay_1(t)+by_2(t)}={a{t}^6+b{sin}^2(t)}</math>
 +
 
 +
 
 +
(2).<math>{H[{ax_1(t)+bx_2(t)}]}={[{a{t}^3}+{bsin(t)}]^2}</math>
 +
 
 +
When we observe (1) and (2) we notice that they are not equal. Thus the system is not linear.

Latest revision as of 10:56, 12 September 2008

Linearity

What is a linear system? A linear system is a mathematical model of a system based on the use of a linear operator. A system is called "linear" if for any constants a,b$ {\in} $complex number and for any inputs x1(t) and x2(t) yielding output y1(t),y2(t) respectively the response to a.x1(t)+b.x2(t) is a.y1(t)+b.y2(t). A more mathematical description would be, given two valid inputs

$ {x_1(t)} $

$ {x_2(t)} $

and their respective outputs

$ ({y_1(t)}=h*{x_1(t)} $

$ {y_2(t)}=h*{x_2(t)} $ then a linear system must satisfy

$ {a*y_1(t)}+{b*y_2(t)}=H*[{a*x_1(t)+b*y_1(t)}] $

Example for a linear system

Consider, $ {x_1(t)=sin(t)} $


$ {x_2(t)=cos(t)} $

Let,

  $ {y_1(t)=tsin(t)} $


  $ y_2(t)=tcos(t) $

Now,

(1).$ {ay_1(t)+by_2(t)}={atsin(t)+btcos(t)} $

And, (2).$ {H[{ax_1(t)+bx_2(t)}]}={t{asin(t)+bcos(t)}}={atsin(t)+btcos(t)} $

Thus since (1) and (2) are the same the system is linear.

Example for non linear system

$ {x_1(t)=t^3} $

$ {x_2(t)=sin(t)} $

$ {y_1(t)={[x_1(t)]^2}} $

$ {y_2(t)={[x_2(t)]^2}} $

Therefore,

(1).$ {ay_1(t)+by_2(t)}={a{t}^6+b{sin}^2(t)} $


(2).$ {H[{ax_1(t)+bx_2(t)}]}={[{a{t}^3}+{bsin(t)}]^2} $

When we observe (1) and (2) we notice that they are not equal. Thus the system is not linear.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett