(New page: == Continuous to discrete time signal== I used the signal <math>y = cos(n)\,</math> as the signal of my graph First lets look at sampling the graph at each 1 sec Image:hw2.1.jpg The...)
(No difference)

Revision as of 18:28, 9 September 2008

Continuous to discrete time signal

I used the signal $ y = cos(n)\, $ as the signal of my graph

First lets look at sampling the graph at each 1 sec

Hw2.1 ECE301Fall2008mboutin.jpg

The dots are scattered everywhere, and is not periodic since $ y[n] \neq y[n+k], k \neq \R \, $

However, once we made some modifications to the graph, turn it into $ y = cos( \frac{\pi}{2} n)\, $, and sample it at every 1 sec

Hw2b ECE301Fall2008mboutin.jpg

The dotes goes periodically from 1 to -1 and back to 1, every 4 seconds.

As $ y[n] = y[n+k], k = \R \, $, the function is periodic

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva