(17 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
<math> E_\infty = \frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)]^2 dt</math> | <math> E_\infty = \frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)]^2 dt</math> | ||
+ | ex: | ||
+ | <math> E_\infty = \int_{-\infty}^{\infty} [x(t)]^2 dt</math> | ||
+ | <math> E_\infty = \int_{0}^{3} [1]^2 </math> | ||
+ | <math> E_\infty = 1+1+1+1 = 4 </math> | ||
+ | == Power == | ||
+ | <math>P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt</math> | ||
+ | <math> P_\infty = \frac{1}{2*N+1} * lim N-> -\infty \int_{-N}^{N} [x(N)]^2 </math> | ||
− | + | ||
− | <math>P_\infty = \frac{1}{ | + | <math> P_\infty = \frac{1}{\infty} * 4 = 0 * 4 = 0 </math> |
Latest revision as of 10:41, 7 September 2008
Energy
$ E_\infty = \frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)]^2 dt $
ex: $ E_\infty = \int_{-\infty}^{\infty} [x(t)]^2 dt $
$ E_\infty = \int_{0}^{3} [1]^2 $
$ E_\infty = 1+1+1+1 = 4 $
Power
$ P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt $
$ P_\infty = \frac{1}{2*N+1} * lim N-> -\infty \int_{-N}^{N} [x(N)]^2 $
$ P_\infty = \frac{1}{\infty} * 4 = 0 * 4 = 0 $