(Created page with "Topic: Energy and Power Computation of a DT geometric signal </center> ---- Compute the energy <math class="inline">E_\infty</math> and the power <math class="inline">P_\inf...")
 
 
(22 intermediate revisions by the same user not shown)
Line 1: Line 1:
Topic: Energy and Power Computation of a DT geometric signal
+
==Problem==
</center>
+
----
+
Compute the energy  <math class="inline">E_\infty</math> and the power  <math class="inline">P_\infty</math> of the following DT signal:
+
  
  
<math>x[n]= ({5} \over {6})u[n] </math>
+
Compute the energy  <math class="inline">E_\infty</math> and the power  <math class="inline">P_\infty</math> of this DT signal:
 +
 
 +
 
 +
<math>x[n] = \left(\frac{5}{6}\right)^n u[n] </math>
 +
 
 +
 
 +
 
 +
 
 +
==Solution==
  
  
Line 11: Line 16:
 
\left\{
 
\left\{
 
\begin{array}{ll}
 
\begin{array}{ll}
  \left(\frac{5}{6}\right)^n & \text{ } n>=0,\\
+
  \left(\frac{5}{6}\right)^n & \text{ if } n\geq 0,\\
 
  0 & \text{else}.
 
  0 & \text{else}.
 
\end{array}
 
\end{array}
 
\right.
 
\right.
 
</math>
 
</math>
 +
  
 
Norm of a signal:
 
Norm of a signal:
 
<math>\begin{align}
 
<math>\begin{align}
|je^{3\pi jn}| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}}
+
\left|\left(\frac{5}{6}\right)^n u[n]\right| = \left(\frac{5}{6}\right)^n \\
&= {{-j^2}\times{e^{3\pi jn - 3\pi jn}}}
+
&= 1
+
 
\end{align}</math>  
 
\end{align}</math>  
  
  
 
<math>\begin{align}
 
<math>\begin{align}
E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}| \\
+
E_{\infty}&=\sum_{n=0}^N \left|\left(\frac{5}{6}\right)^n\right|^2 \\
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\
+
&= \sum_{n=0}^N \left(\frac{5}{6}\right)^{2n} \\
&=\infty. \\
+
&= \sum_{n=0}^N \left(\frac{25}{36}\right)^{n} \\
 +
&= \frac{1}{1-\frac{25}{36}} \\
 +
&= \frac{36}{11} \\
 
\end{align}</math>  
 
\end{align}</math>  
  
  
<math>E_{\infty} = \infty</math>.  
+
<math>E_{\infty} = \frac{36}{11} </math>.  
 +
 
 +
 
 +
 
 +
 
  
 
<math>\begin{align}
 
<math>\begin{align}
P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\
+
P_{\infty} &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N \left|\left(\frac{5}{6}\right)^n\right|^2 \\  
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \times \left(\frac{25}{36}\right)^n \\
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \times \frac{1}{1-\frac{25}{36}} \\  
&= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\
+
&= \lim_{N\rightarrow \infty} \left({ \frac{\frac{36}{11}}{2N+1}} \right) \\
&= \lim_{N\rightarrow \infty}{1}\\
+
&= 0 \\
&= 1 \\
+
\end{align}</math>  
\end{align}</math>
+
 
  
 +
<math>P_{\infty} = 0 </math>
  
<math>P_{\infty} = 1 </math>
 
  
 
Conclusion:  
 
Conclusion:  
 +
<math>E_{\infty} = \frac{36}{11} </math>, <math>P_{\infty} = 0 \\</math>
  
Therefore, <math>E_{\infty} = \infty</math>, <math>P_{\infty} = 1 </math>
+
When <math>E_{\infty} = \text{finite number} </math>, <math>P_{\infty} = 0 </math>

Latest revision as of 19:39, 1 December 2018

Problem

Compute the energy $ E_\infty $ and the power $ P_\infty $ of this DT signal:


$ x[n] = \left(\frac{5}{6}\right)^n u[n] $



Solution

$  x[n] = \left\{ \begin{array}{ll}  \left(\frac{5}{6}\right)^n & \text{ if } n\geq 0,\\  0 & \text{else}. \end{array} \right.  $


Norm of a signal: $ \begin{align} \left|\left(\frac{5}{6}\right)^n u[n]\right| = \left(\frac{5}{6}\right)^n \\ \end{align} $


$ \begin{align} E_{\infty}&=\sum_{n=0}^N \left|\left(\frac{5}{6}\right)^n\right|^2 \\ &= \sum_{n=0}^N \left(\frac{5}{6}\right)^{2n} \\ &= \sum_{n=0}^N \left(\frac{25}{36}\right)^{n} \\ &= \frac{1}{1-\frac{25}{36}} \\ &= \frac{36}{11} \\ \end{align} $


$ E_{\infty} = \frac{36}{11} $.



$ \begin{align} P_{\infty} &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N \left|\left(\frac{5}{6}\right)^n\right|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \times \left(\frac{25}{36}\right)^n \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \times \frac{1}{1-\frac{25}{36}} \\ &= \lim_{N\rightarrow \infty} \left({ \frac{\frac{36}{11}}{2N+1}} \right) \\ &= 0 \\ \end{align} $


$ P_{\infty} = 0 $


Conclusion: $ E_{\infty} = \frac{36}{11} $, $ P_{\infty} = 0 \\ $

When $ E_{\infty} = \text{finite number} $, $ P_{\infty} = 0 $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal