(Textual background of question part added)
 
(Added discussion section and image)
Line 20: Line 20:
 
It is given that <math>N_{fd1} = \mp 5</math> at an inferred position of <math>\phi_r = 90^\circ</math> and <math>\phi_r = 270^\circ</math>, <math>N_{fd2} = \mp 3</math> at an inferred position of <math>\phi_r = 60^\circ</math> and <math>\phi_r = 240^\circ</math>, and <math>N_{fd3} = \mp 3</math> at an inferred position of <math>\phi_r = 120^\circ</math> and <math>\phi_r = 300^\circ</math>.
 
It is given that <math>N_{fd1} = \mp 5</math> at an inferred position of <math>\phi_r = 90^\circ</math> and <math>\phi_r = 270^\circ</math>, <math>N_{fd2} = \mp 3</math> at an inferred position of <math>\phi_r = 60^\circ</math> and <math>\phi_r = 240^\circ</math>, and <math>N_{fd3} = \mp 3</math> at an inferred position of <math>\phi_r = 120^\circ</math> and <math>\phi_r = 300^\circ</math>.
  
Because <math>\iint_S \vec{B} \cdot d\vec{S} = 0</math>, including on the interior surface of the stator, the average value in the developed diagram of <math>B(\phi_r)</math> must be 0. The average value of MMF must also be 0 because the airgap is constant, meaning that <math>\mathbb{F}(\phi_r)</math> and <math>B(\phi_r)</math> are proportional to each other in the airgap from <math>B(\phi_r) = \frac{\mu_0 \mathbb{F}(\phi_r)}{g}</math>. Thus, the offset of -5.5 A is removed.
+
Because <math>\oiint_S \vec{B} \cdot d\vec{S} = 0</math>, including on the interior surface of the stator and ends of the machine, the average value in the developed diagram of <math>B(\phi_r)</math> must be 0. The average value of MMF must also be 0 because the airgap is constant, meaning that <math>\mathbb{F}(\phi_r)</math> and <math>B(\phi_r)</math> are proportional to each other in the airgap from <math>B(\phi_r) = \frac{\mu_0 \mathbb{F}(\phi_r)}{g}</math>. Thus, the offset of -5.5 A is removed.
  
 +
[[Image:ECE QE ES1 2007 fig1.png|500x500px|left|MMF in Developed Diagram Format]]
 +
 +
----
 +
==Discussion==
 +
 +
----
 
----
 
----
 
[[ECE_PhD_QE_ES1_2007|Back to ES-1, August 2007]]
 
[[ECE_PhD_QE_ES1_2007|Back to ES-1, August 2007]]

Revision as of 15:09, 9 January 2018


Answers and Discussions for

ECE Ph.D. Qualifying Exam ES-1 August 2007



Question 1, part a

A developed diagram approach is used, "unrolling" the machine such that increasing $ \phi $ (counterclockwise as drawn) is to the left.

Magnetomotive force (MMF) for a machine with concentrated windings may be found as $ \mathbb{F} = \int_{\phi = 0}^{360^\circ} N(\phi) i \, d\phi $.

It is given that $ N_{fd1} = \mp 5 $ at an inferred position of $ \phi_r = 90^\circ $ and $ \phi_r = 270^\circ $, $ N_{fd2} = \mp 3 $ at an inferred position of $ \phi_r = 60^\circ $ and $ \phi_r = 240^\circ $, and $ N_{fd3} = \mp 3 $ at an inferred position of $ \phi_r = 120^\circ $ and $ \phi_r = 300^\circ $.

Because $ \oiint_S \vec{B} \cdot d\vec{S} = 0 $, including on the interior surface of the stator and ends of the machine, the average value in the developed diagram of $ B(\phi_r) $ must be 0. The average value of MMF must also be 0 because the airgap is constant, meaning that $ \mathbb{F}(\phi_r) $ and $ B(\phi_r) $ are proportional to each other in the airgap from $ B(\phi_r) = \frac{\mu_0 \mathbb{F}(\phi_r)}{g} $. Thus, the offset of -5.5 A is removed.

MMF in Developed Diagram Format

Discussion



Back to ES-1, August 2007

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood