(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''Work By Ryne Rayburn (rrayburn)'''
+
'''''Work By Ryne Rayburn (rrayburn)'''''
  
 
<math>x(t)=\sqrt{t}</math>
 
<math>x(t)=\sqrt{t}</math>
 
----
 
----
<math>E\infty=\int|x(t)|^2dt</math> (from <math>-\infty</math> to <math>\infty</math>)
+
<math>E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt</math>
  
     <math>E\infty=\int|\sqrt{t}|^2dt=\int tdt</math>(from <math>0</math> to <math>\infty</math> due to sqrt limiting to positive Real numbers)
+
     <math>E\infty=\int_{-\infty}^\infty |\sqrt{t}|^2\,dt=\int_0^\infty t\,dt</math> (due to sqrt limiting to positive Real numbers)
     <math>E\infty=.5*t^2|</math>(from <math>0</math> to <math>\infty</math>)
+
     <math>E\infty=.5*t^2|_{-\infty}^\infty</math>
 
     <math>E\infty=.5(\infty^2-0^2)=\infty</math>
 
     <math>E\infty=.5(\infty^2-0^2)=\infty</math>
  
<math>P\infty=lim\bullet T\rightarrow\infty*1/(2T)\int|x(t)|^2dt</math> (from <math>-T</math> to <math>T</math>)
+
<math>P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt</math>
 +
 
 +
    <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T |\sqrt{t}|^2\,dt=\int_0^T t\,dt</math>
 +
    <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*.5t^2|_0^T</math>
 +
    <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(.5T^2)</math>
 +
    <math>P\infty=lim_{T \to \infty} \ (.25T)=\infty</math>
  
    <math>P\infty=lim\bullet T\rightarrow\infty~~1/(2T)\int|\sqrt{t}|^2dt=\int tdt</math> (from <math>0</math> to <math>T</math>)
 
    <math>P\infty=lim\bullet T\rightarrow\infty~~1/(2T)*.5t^2|</math>(from <math>0</math> to <math>T</math>)
 
    <math>P\infty=lim\bullet T\rightarrow\infty~~1/(2T)*(.5T^2)</math>
 
    <math>P\infty=lim\bullet T\rightarrow\infty~~(.25T)=\infty</math>
 
  
 
<math>x(t)=\cos(t)+\jmath\sin(t)</math>
 
<math>x(t)=\cos(t)+\jmath\sin(t)</math>
Line 20: Line 21:
 
<math>|x(t)|=|\cos(t)+\jmath\sin(t)|=\sqrt{\cos^2(t)+\sin^2(t)}=1</math>
 
<math>|x(t)|=|\cos(t)+\jmath\sin(t)|=\sqrt{\cos^2(t)+\sin^2(t)}=1</math>
  
<math>E\infty=\int|x(t)|^2dt</math> (from <math>-\infty</math> to <math>\infty</math>)
+
<math>E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt</math>
  
     <math>E\infty=\int|1|^2dt=t|</math>(from <math>-\infty</math> to <math>\infty</math>)
+
     <math>E\infty=\int_{-\infty}^\infty |1|^2\,dt=t|_{-\infty}^\infty</math>
 
     <math>E\infty=\infty</math>
 
     <math>E\infty=\infty</math>
  
<math>P\infty=lim\bullet T\rightarrow\infty~~1/(2T)\int|x(t)|^2dt</math> (from <math>-T</math> to <math>T</math>)
+
<math>P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt</math>
  
     <math>P\infty=lim\bullet T\rightarrow\infty~~1/(2T)\int|1|^2dt</math>
+
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|1|^2dt</math>
     <math>P\infty=lim\bullet T\rightarrow\infty~~1/(2T)*t|</math>(from <math>-T</math> to <math>T</math>)
+
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*t|_{-T}^T</math>
     <math>P\infty=lim\bullet T\rightarrow\infty~~1/(2T)*(T-(-T))</math>
+
     <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(T-(-T))</math>
     <math>P\infty=lim\bullet T\rightarrow\infty~~1</math>
+
     <math>P\infty=lim_{T \to \infty} \ 1</math>
 
     <math>P\infty=1</math>
 
     <math>P\infty=1</math>
 +
 +
[[Computing_E_infinity_and_P_infinity| Return to Computing E infinity and P infinity]]

Latest revision as of 15:09, 25 February 2015

Work By Ryne Rayburn (rrayburn)

$ x(t)=\sqrt{t} $


$ E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt $

   $ E\infty=\int_{-\infty}^\infty |\sqrt{t}|^2\,dt=\int_0^\infty t\,dt $ (due to sqrt limiting to positive Real numbers)
   $ E\infty=.5*t^2|_{-\infty}^\infty $
   $ E\infty=.5(\infty^2-0^2)=\infty $

$ P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt $

   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T |\sqrt{t}|^2\,dt=\int_0^T t\,dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*.5t^2|_0^T $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(.5T^2) $
   $ P\infty=lim_{T \to \infty} \ (.25T)=\infty $


$ x(t)=\cos(t)+\jmath\sin(t) $


$ |x(t)|=|\cos(t)+\jmath\sin(t)|=\sqrt{\cos^2(t)+\sin^2(t)}=1 $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt $

   $ E\infty=\int_{-\infty}^\infty |1|^2\,dt=t|_{-\infty}^\infty $
   $ E\infty=\infty $

$ P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt $

   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|1|^2dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*t|_{-T}^T $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(T-(-T)) $
   $ P\infty=lim_{T \to \infty} \ 1 $
   $ P\infty=1 $

Return to Computing E infinity and P infinity

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn