(→Linear System) |
(→Example) |
||
Line 8: | Line 8: | ||
== Example == | == Example == | ||
<pre> | <pre> | ||
− | + | Let: | |
− | + | x1(t)=t, x2(t)=t+1; | |
− | + | y1(t)=2*1(t)= 2*t, y2(t)=x(t)+1= t+2; | |
− | + | a=2, b=3; | |
− | + | so, a*x1(t)+b*x2(t)=2*t+3*(t+1)=5*t+6 | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</pre> | </pre> |
Revision as of 16:28, 12 September 2008
Linear System
A system is called "Linear" if for any constants a,b and for any inputs x1(t),x2(t),(x1[n],x2[n]) yielding output y1(t),y2(t),respectively, the respond to a*x1(t)+b*x2(t) is a*y1(t)+b*y2(t)
Example
Let: x1(t)=t, x2(t)=t+1; y1(t)=2*1(t)= 2*t, y2(t)=x(t)+1= t+2; a=2, b=3; so, a*x1(t)+b*x2(t)=2*t+3*(t+1)=5*t+6