(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:ECE]]
+
<br>
[[Category:QE]]
+
[[Category:CNSIP]]
+
[[Category:problem solving]]
+
[[Category:random variables]]
+
[[Category:probability]]
+
 
+
 
<center>
 
<center>
<font size= 4>
+
<font size="4">[[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] </font>  
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
+
</font size>
+
  
<font size= 4>
+
<font size="4">Communication, Networking, Signal and Image Processing (CS)</font>
Communication, Networking, Signal and Image Processing (CS)
+
  
Question 1: Probability and Random Processes
+
<font size="4">Question 1: Probability and Random Processes </font>  
</font size>
+
  
August 2012
+
August 2012  
</center>
+
</center>  
 
----
 
----
 +
 
----
 
----
Jump to [[ECE-QE_CS1-2012_solusion-1|Problem 2]],[[ECE-QE CS1-2012 solusion-2|3]]
+
 
 +
Jump to [[ECE-QE CS1-2012 solusion-1|Problem 2]],[[ECE-QE_CS1-2012_solusion-2|3]]  
 +
 
 
----
 
----
=Problem 3=
+
 
 +
= Problem 3 =
 +
 
 +
===== Problem statement:&nbsp;  =====
 +
 
 +
<br> Let <math>\mathbf{X}_{1} \dots \mathbf{X}_{n} \dots </math> be a sequence of independent, identical distributed random variables, each uniformly distributed on the interval [0, 1], an hence having pdf <br> <math>f_{X}\left(x\right)=\begin{cases}
 +
\begin{array}{lll}
 +
1,    \text{      for }  0 \leq x \leq1\\
 +
0,  \text{      elsewhere. }
 +
\end{array}\end{cases}</math> <br>
 +
 
 +
Let <math>\mathbf{Y}_{n}</math> be a new random variable defined by <br>
 +
 
 +
<math>\mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \}</math>
 +
 
 +
<br>
 +
 
 +
'''(a)''' Find the pdf of <math>\mathbf{Y}_{n}</math>.
 +
 
 +
'''(b)''' Does the sequence <math>\mathbf{Y}_{n}</math> converge in probability?
 +
 
 +
'''(c)''' Does the sequence <math>\mathbf{Y}_{n}</math> converge in distribution? If yes, specify the cumulative function of the random variable it converges to.
 +
 
 +
<br>
 +
 
 +
=====  =====
  
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
Line 34: Line 52:
 
         \end{array}
 
         \end{array}
 
     \right.
 
     \right.
</math>
+
</math>  
  
<math> F_{X}(x) = \int_0^x f_{X}(\alpha)d\alpha = \int_0^x d\alpha = x </math>
+
<math> F_{X}(x) = \int_0^x f_{X}(\alpha)d\alpha = \int_0^x d\alpha = x </math>  
  
<math> Y_{n} = min\{X_{1}, ...., X_{n}\} </math>
+
<span class="texhtml">''Y''<sub>''n''</sub> = ''m''''i''''n''{''X''<sub>1</sub>,....,''X''<sub>''n''</sub>}</span>  
  
 
'''(a)''' <br>  
 
'''(a)''' <br>  
  
<math>\; \; \; F_{Y_{n}}(y) = P(\{Y \leq y\}) </math> <br>
+
<math>\; \; \; F_{Y_{n}}(y) = P(\{Y \leq y\}) </math> <br> <math> = P(\{min\{X_{1}, ..., X_{n}\} \leq y\}) </math> <br>  
<math> = P(\{min\{X_{1}, ..., X_{n}\} \leq y\}) </math> <br>
+
  
<math> = 1 - P(\{X_{1} > y\}, ...., \{X_{n} > y\}) </math> <br>
+
<span class="texhtml"> = 1 − ''P''({''X''<sub>1</sub> &gt; ''y''},....,{''X''<sub>''n''</sub> &gt; ''y''})</span> <br>  
  
<math> = 1 - P(\{X_{1} > y\})P(\{X_{2} > y\})...P(\{X_{n} > y\}) </math> <br>
+
<span class="texhtml"> = 1 − ''P''({''X''<sub>1</sub> &gt; ''y''})''P''({''X''<sub>2</sub> &gt; ''y''})...''P''({''X''<sub>''n''</sub> &gt; ''y''})</span> <br>  
  
<math> = 1 - (1-y)^{n} </math>
+
<span class="texhtml"> = 1 (1 − ''y'')<sup>''n''</sup></span>  
  
 +
<br> <math>f_{Y_{n}}(y) = \frac{dF_{Y}(y)}{dy} = n(1-y)^{n-1}  1_{[0, 1]}(y)</math>
  
<math> f_{Y_{n}}(y) = \frac{dF_{Y}(y)}{dy} = n(1-y)^{n-1}  1_{[0, 1]}(y) </math>
+
<br> '''(b)''' <br>  
  
 
+
Yes. It converges in probability.  
'''(b)''' <br>
+
 
+
Yes. It converges in probability.
+
  
 
A random variable converges in probability if  
 
A random variable converges in probability if  
  
<math>P\{\mid Y_{n} - a \mid > \varepsilon\} \rightarrow 0 \;\; as \; n \rightarrow \inf \;\; for \;any\; \varepsilon > 0 </math>
+
<math>P\{\mid Y_{n} - a \mid > \varepsilon\} \rightarrow 0 \;\; as \; n \rightarrow \inf \;\; for \;any\; \varepsilon > 0 </math>  
  
Then the random variable is said to converge to a.
+
Then the random variable is said to converge to a.  
  
Consider
+
Consider  
  
<math>P\{\mid Y_{n}-0 \mid > \varepsilon\} = P\{Y_{n}>\varepsilon\}  </math>
+
<math>P\{\mid Y_{n}-0 \mid > \varepsilon\} = P\{Y_{n}>\varepsilon\}  </math>  
  
<math>= 1 - P\{Y_{n} \leq \varepsilon\} = 1 - [1-(1-\varepsilon)^n] = (1-\varepsilon)^n</math>
+
<math>= 1 - P\{Y_{n} \leq \varepsilon\} = 1 - [1-(1-\varepsilon)^n] = (1-\varepsilon)^n</math>  
  
 +
<br> <math> As\; n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0 </math>
  
<math> As\; n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0 </math>
+
Since <math> 0 < (1-\varepsilon) <1</math>  
  
Since
+
Thus <math>Y_{n} \rightarrow 0</math>  
<math> 0 < (1-\varepsilon) <1</math>
+
  
Thus
+
<br> '''(c)''' <br>  
<math>Y_{n} \rightarrow 0</math>
+
  
 
+
From the solution to (a), we have  
'''(c)''' <br>
+
 
+
From the solution to (a), we have
+
  
 
<math>
 
<math>
Line 92: Line 103:
 
         \end{array}
 
         \end{array}
 
     \right.
 
     \right.
</math>
+
</math>  
  
It converges in distribution since:<br> <math>convergence(probability) \Rightarrow convergence(distribution) </math>
+
It converges in distribution since:<br> <math>convergence(probability) \Rightarrow convergence(distribution) </math>  
  
 +
<br> To find the convergence of CDF, <br> <math>\lim_{n \to \infty} F_{Y_{n}}(y)
  
To find the convergence of CDF, <br>
+
= \left\{
<math> \lim_{n \to \infty} F_{Y_{n}}(y)
+
        \begin{array}{ll}
 +
          0 & \quad y \leq 0 \\
 +
          \lim_{n \to \infty} 1 - (1-y)^{n} & \quad 0 < y \leq 1 \\
 +
          1 & \quad y > 1
 +
        \end{array}
 +
    \right.
  
= \lim_{n \to \infty} 1 - (1-y)^{n} = \left\{
+
= \left\{
 
         \begin{array}{ll}
 
         \begin{array}{ll}
 
           0 & \quad y \leq 0 \\
 
           0 & \quad y \leq 0 \\
 
           1 & \quad y > 0
 
           1 & \quad y > 0
 
         \end{array}
 
         \end{array}
     \right. </math>
+
     \right.</math>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{For part (b), I would like to add some additional parts to the following equation for better understanding}}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{*For part (a), there is a typo for the following equation}}</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} F_{Y_{n}}(y) = P(\{Y \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) \text{, and should be changed to} }</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{Since } 0 < (1-\varepsilon) <1}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} F_{Y_{n}}(y) = P(\{Y_{n} \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) }</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{to }}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{*For part (b), I would like to add some additional parts to the following equation for better understanding}}</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red}\text{Since } 0 < (1-\varepsilon) <1 \text{ as } n\rightarrow \infty \Rightarrow (1-\varepsilon)^n \to 0 \; \; \; \therefore \lim_{n \to \infty}P\{\mid Y_{n}-0 \mid > \varepsilon\} = \lim_{n \to \infty} (1-\varepsilon)^n =  0}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0}</math></span></font><br>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{Since } 0 < (1-\varepsilon) <1}</math></span></font><br>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{to }}</math></span></font><br>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{red}\text{Since } 0 < (1-\varepsilon) <1 \text{, as } n\rightarrow \infty \Rightarrow \lim_{n \to \infty}(1-\varepsilon)^n = 0 \; \; \; \therefore \lim_{n \to \infty}P\{\mid Y_{n}-0 \mid > \varepsilon\} = \lim_{n \to \infty} (1-\varepsilon)^n =  0}</math></span></font><br>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{*For part (c), the CDF of the random variable } \mathbf{Y}_n \text{ is incorrect. It should be}}</math></span></font><br>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} F_{Y_n}\left(y\right)=\begin{cases}
 +
\begin{array}{lll}
 +
0,    y <0 \\
 +
1-(1-y)^n, 0 \leq y \leq 1 \\
 +
1,  y>1
 +
\end{array}\end{cases} }</math></span></font><br>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{Therefore, it should be modified as follow}}</math></span></font><br>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{As } n \to \infty \text{,} \,\, F_{Y_n}(y) \to F_{Y}(y)=\begin{cases}
 +
\begin{array}{lll}
 +
0,    y <0 \\
 +
1,  y \geq 0
 +
\end{array}\end{cases} }</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{For part (c),}}</math></span></font><br>
 
 
 
===== <math>\color{blue}\text{Solution 2:}</math>  =====
 
===== <math>\color{blue}\text{Solution 2:}</math>  =====
'''(a)'''
 
<br>
 
Since <math class="inline">\mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \}</math>, and <math class="inline"> \{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} </math> are i.i.d R.V. 
 
<br>
 
We can have the CDF of <math class="inline">\mathbf{Y}_{n}</math>
 
<br>
 
<math> P(\mathbf{Y}_{n} \leq y) = P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} \leq y) </math> <br>
 
<math> = 1-P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} > y)</math><br>
 
<math> = 1-P(\mathbf{X}_1 > y)P(\mathbf{X}_2 > y) \dots P(\mathbf{X}_n > y)</math><br>
 
<math> = 1-(1-F_{X_1}(y))(1-F_{X_2}(y)) \dots (1-F_{X_n}(y))=1-(1-F_{X_1}(y))^n</math><br>
 
  
Since <math class="inline">\mathbf{Y}_{n} </math> is also uniform distributed on the interval [0,1] <br>
+
'''(a)''' <br> Since <math>\mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \}</math>, and <math> \{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} </math> are i.i.d R.V. <br> We can have the CDF of <math>\mathbf{Y}_{n}</math> <br> <math> P(\mathbf{Y}_{n} \leq y) = P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} \leq y) </math> <br> <math> = 1-P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} > y)</math><br> <math> = 1-P(\mathbf{X}_1 > y)P(\mathbf{X}_2 > y) \dots P(\mathbf{X}_n > y)</math><br> <math> = 1-(1-F_{X_1}(y))(1-F_{X_2}(y)) \dots (1-F_{X_n}(y))=1-(1-F_{X_1}(y))^n</math><br>  
When <math class="inline"> Y_n = y < 0 </math>, <math class="inline">P(\{\mathbf{Y}_{n}<0 \}) =0 </math>   since <math class="inline">F_{X_1}(y) =0 </math><br>
+
When <math class="inline"> Y_n = y > 1 </math>, <math class="inline">P(\{\mathbf{Y}_{n}>1 \}) =1 </math>   since <math class="inline">F_{X_1}(y) =1 </math><br>
+
When <math class="inline"> 0 \leq Y_n = y \leq 1 </math><br>
+
  
<math> F_{X_1}(y)= \int_{0}^{y}f_{X_1}(x)\,dx=\int_{0}^{y}\, 1 \, dx = y</math><br>
+
Since <math>\mathbf{Y}_{n} </math> is also uniform distributed on the interval [0,1] <br> When <span class="texhtml">''Y''<sub>''n''</sub> = ''y'' &lt; 0</span>, <math>P(\{\mathbf{Y}_{n}<0 \}) =0 </math> since <math>F_{X_1}(y) =0 </math><br> When <span class="texhtml">''Y''<sub>''n''</sub> = ''y'' &gt; 1</span>, <math>P(\{\mathbf{Y}_{n}>1 \}) =1 </math> since <math>F_{X_1}(y) =1 </math><br> When <math> 0 \leq Y_n = y \leq 1 </math><br>  
  
Thus, the CDF of <math class="inline">\mathbf{Y}_{n}</math> is the following <br>
+
<math> F_{X_1}(y)= \int_{0}^{y}f_{X_1}(x)\,dx=\int_{0}^{y}\, 1 \, dx = y</math><br>
<math class="inline">F_{Y_n}\left(y\right)=\begin{cases}
+
 
 +
Thus, the CDF of <math>\mathbf{Y}_{n}</math> is the following <br> <math>F_{Y_n}\left(y\right)=\begin{cases}
 
\begin{array}{lll}
 
\begin{array}{lll}
 
0,    y <0 \\
 
0,    y <0 \\
 
1-(1-y)^n, 0 \leq y \leq 1 \\
 
1-(1-y)^n, 0 \leq y \leq 1 \\
 
1,  y>1
 
1,  y>1
\end{array}\end{cases}</math><br>
+
\end{array}\end{cases}</math><br> Thus, the pdf of <math>\mathbf{Y}_{n}</math> is <br> <math>f_{Y_n}\left(y\right)=\begin{cases}
Thus, the pdf of <math class="inline">\mathbf{Y}_{n}</math> is
+
<br>
+
<math class="inline">f_{Y_n}\left(y\right)=\begin{cases}
+
 
\begin{array}{lll}
 
\begin{array}{lll}
 
n(1-y)^{n-1},  0 \leq y \leq 1 \\
 
n(1-y)^{n-1},  0 \leq y \leq 1 \\
 
0,  \,\,\, \text{elsewhere}
 
0,  \,\,\, \text{elsewhere}
\end{array}\end{cases}</math>
+
\end{array}\end{cases}</math> <br>  
<br>
+
 
+
  
'''(b)'''<br>
+
<br> '''(b)'''<br> Let <span class="texhtml">μ = ''E''[''Y''<sub>''n''</sub>]</span> and <span class="texhtml">σ<sup>2</sup> = ''E''( | ''Y''<sub>''n''</sub> − μ | <sup>2</sup>)</span>. By Chebyshev inequality, we have <br> <math> P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} = \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2}</math><br> Now, we examine <br> <math> E[|\mathbf{Y}_{n}-\mu|^2] = E[Y_n^2-2 \mu Y_n+\mu^2] = E[Y_n^2]-2\mu E[Y_n]+\mu^2=E[Y_n^2]-\mu^2.</math><br>  
Let <math class="inline">\mu=E[Y_n]</math> and <math class="inline">\sigma^2=E(|Y_n-\mu|^2)</math>. By Chebyshev inequality, we have  
+
<br>
+
<math> P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} = \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2}</math><br>
+
Now, we examine
+
<br>
+
<math> E[|\mathbf{Y}_{n}-\mu|^2] = E[Y_n^2-2 \mu Y_n+\mu^2] = E[Y_n^2]-2\mu E[Y_n]+\mu^2=E[Y_n^2]-\mu^2.</math><br>
+
  
In problem (a), we have the pdf of <math class="inline">Y_n</math>, we can find <math class="inline">E[Y_n]</math> and <math class="inline">E[Y_n^2]</math>
+
In problem (a), we have the pdf of <span class="texhtml">''Y''<sub>''n''</sub></span>, we can find <span class="texhtml">''E''[''Y''<sub>''n''</sub>]</span> and <math>E[Y_n^2]</math> <br> <math> E[Y_n] = \int_{0}^{1}y f_{Y_n}(y) \,dy = \int_{0}^{1} y n(1-y)^{n-1} \, dy = \frac{1}{n+1}</math><br> <math> E[Y_n^2] = \int_{0}^{1}y^2 f_{Y_n}(y) \,dy = \int_{0}^{1} y^2 n(1-y)^{n-1} \, dy = \frac{2}{n^2+3n+2}</math> <br> As <math>n \to \infty</math><br> <math> \lim_{n \to \infty} E[|\mathbf{Y}_{n}-\mu|^2] = \lim_{n \to \infty} \left( E[Y_n^2]-(E[Y_n])^2 \right)= \lim_{n \to \infty}\left( \frac{2}{n^2+3n+2}- (\frac{1}{n+1})^2\right)=0</math><br> <math>\Rightarrow P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2} = 0 \,\,\text{as} \,n \to \infty</math><br> Thus, the sequence <span class="texhtml">''Y''<sub>''n''</sub></span> converges in probability to <span class="texhtml">μ</span> for any <math>\varepsilon>0 </math>, and <br> <math> \lim_{n \to \infty} \mu = \lim_{n \to \infty} E[Y_{n}] = \lim_{n \to \infty} \frac{1}{n+1} =0 </math><br> <math> \therefore P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) = P(|\mathbf{Y}_{n}-0| \geq \varepsilon)  \to 0   \,\,\text{as} \,\, n \to \infty</math><br>  
<br>
+
<math> E[Y_n] = \int_{0}^{1}y f_{Y_n}(y) \,dy = \int_{0}^{1} y n(1-y)^{n-1} \, dy = \frac{1}{n+1}</math><br>  
+
<math> E[Y_n^2] = \int_{0}^{1}y^2 f_{Y_n}(y) \,dy = \int_{0}^{1} y^2 n(1-y)^{n-1} \, dy = \frac{2}{n^2+3n+2}</math>
+
<br>
+
As <math class="inline">n \to \infty</math><br>
+
<math> \lim_{n \to \infty} E[|\mathbf{Y}_{n}-\mu|^2] = \lim_{n \to \infty} \left( E[Y_n^2]-(E[Y_n])^2 \right)= \lim_{n \to \infty}\left( \frac{2}{n^2+3n+2}- (\frac{1}{n+1})^2\right)=0</math><br>
+
<math>\Rightarrow P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2} = 0 \,\,\text{as} \,n \to \infty</math><br>
+
Thus, the sequence <math class="inline">Y_n </math> converges in probability to <math class="inline">\mu </math> for any <math class="inline">\varepsilon>0 </math>, and <br>
+
<math> P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \to 0 \,\,\text{as} \,\, n \to \infty</math><br>
+
  
'''(c)'''<br>
+
'''(c)'''<br> The CDF of <span class="texhtml">''Y''<sub>''n''</sub></span><br> <math>F_{Y_n}\left(y\right)=\begin{cases}
The CDF of <math class="inline">Y_n</math><br>
+
<math class="inline">F_{Y_n}\left(y\right)=\begin{cases}
+
 
\begin{array}{lll}
 
\begin{array}{lll}
 
0,    y <0 \\
 
0,    y <0 \\
 
1-(1-y)^n, 0 \leq y \leq 1 \\
 
1-(1-y)^n, 0 \leq y \leq 1 \\
 
1,  y>1
 
1,  y>1
\end{array}\end{cases}</math><br>
+
\end{array}\end{cases}</math><br>  
  
As <math class="inline">n \to \infty</math><br>
+
As <math>n \to \infty</math><br> <math> F_{Y_n}(y) \to F_{Y}(y)= \begin{cases}
<math> F_{Y_n}(y) \to F_{Y}(y)= \begin{cases}
+
 
\begin{array}{lll}
 
\begin{array}{lll}
 
0,  \,\,  y <0 \\
 
0,  \,\,  y <0 \\
 
1,  \,\, y \geq 0
 
1,  \,\, y \geq 0
\end{array}\end{cases}</math><br>
+
\end{array}\end{cases}</math><br> where <math>1-(1-y)^n \to 1</math> as <math>n \to \infty</math>, when <span class="texhtml">0 &lt; ''y'' &lt; 1</span><br> Because <span class="texhtml">0 &lt; (1 − ''y'') &lt; 1</span>, <math>(1-y)^n \to 0</math>, when <math>n \to \infty</math><br> <math> F_{Y}(y)= \begin{cases}
where <math class="inline">1-(1-y)^n \to 1</math> as <math class="inline">n \to \infty</math>, when <math class="inline">0 <y<1 </math><br>
+
Because <math class="inline">0 < (1-y) <1</math>, <math class="inline">(1-y)^n \to 0</math>, when <math class="inline">n \to \infty</math><br>
+
<math> F_{Y}(y)= \begin{cases}
+
 
\begin{array}{lll}
 
\begin{array}{lll}
 
0,  \,\,  y <0 \\
 
0,  \,\,  y <0 \\
 
1,  \,\, y \geq 0
 
1,  \,\, y \geq 0
\end{array}\end{cases}</math><br>
+
\end{array}\end{cases}</math><br> where this CDF is a step function.<br>  
where this CDF is a step function.<br>
+
 
 +
Thus, the sequence of random variable <span class="texhtml">''Y''<sub>''n''</sub></span> with cumulative distribution function <math>F_{Y_n}(y)</math> converges in distribution to the random variable <span class="texhtml">''Y''</span> with cumulative distribution function <span class="texhtml">''F''<sub>''Y''</sub>(''y'')</span>, which is a step function.
 +
 
 +
<br>
 +
 
 +
<font color="red">'''<u>Comments on Solution 2:</u>'''</font>
 +
 
 +
<font color="red">1. Curly braces are required to take probabilities on events.</font>
 +
 
 +
<font color="red">2. Error in part (c): As n grows to infinity, 1 - (1-y)<sup>n</sup>&nbsp;is definitely not equal to 1, for y = 0. Technically, that would lead to an indeterminate value at y = 0, or can be thought of to be 0 (as engineering common practice).<sup></sup></font>
 +
 
 +
<br>
 +
 
 +
=== Related Problems  ===
 +
 
 +
----
 +
 
 +
1. Let <span class="texhtml">''X''<sub>''n''</sub></span> be a sequence of independent, identical distributed random variables, each has Cauchy pdf<br> <math> f(x)=\frac{1}{\pi (1+x^2)} \text{, } -\infty < x < \infty </math><br>
 +
 
 +
Let <span class="texhtml">''Y''<sub>''n''</sub></span> a new random variable defined by<br> <math> Y_{n} = \frac{1}{n} \sum_{i=1}^{n} \,  X_{i} </math><br>
 +
 
 +
'''(a)''' Find the pdf of the sequence <span class="texhtml">''Y''<sub>''n''</sub></span>, and describe how it depends on n.
 +
 
 +
'''(b)''' Does the sequence <math>\mathbf{Y}_{n}</math> converge in distribution?
 +
 
 +
'''(c)''' If yes, what is the distribution of the random variable it converges to?
 +
 
 +
<br>
 +
 
 +
2. Explain what happens in this problem when:
 +
 
 +
(a) Y<sub>n</sub> = max{X<sub>1</sub>, X<sub>2</sub>, ...., X<sub>n</sub>}.
 +
 
 +
(b)&nbsp;X<sub>1</sub>, X<sub>2</sub>, ...., X<sub>n</sub> are exponentially distributed.
 +
 
 +
----
  
Thus, the sequence of random variable <math class="inline">{Y_n}</math> with cumulative distribution function <math class="inline">F_{Y_n}(y)</math> converges in distribution to the random variable <math class="inline">Y</math> with cumulative distribution function <math class="inline">F_{Y}(y)</math>, which is a step function.
+
[[Category:ECE]] [[Category:QE]] [[Category:CNSIP]] [[Category:Problem_solving]] [[Category:Random_variables]] [[Category:Probability]]

Latest revision as of 09:16, 15 August 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2012



Jump to Problem 2,3


Problem 3

Problem statement: 


Let $ \mathbf{X}_{1} \dots \mathbf{X}_{n} \dots $ be a sequence of independent, identical distributed random variables, each uniformly distributed on the interval [0, 1], an hence having pdf
$ f_{X}\left(x\right)=\begin{cases} \begin{array}{lll} 1, \text{ for } 0 \leq x \leq1\\ 0, \text{ elsewhere. } \end{array}\end{cases} $

Let $ \mathbf{Y}_{n} $ be a new random variable defined by

$ \mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} $


(a) Find the pdf of $ \mathbf{Y}_{n} $.

(b) Does the sequence $ \mathbf{Y}_{n} $ converge in probability?

(c) Does the sequence $ \mathbf{Y}_{n} $ converge in distribution? If yes, specify the cumulative function of the random variable it converges to.


$ \color{blue}\text{Solution 1:} $

$ f_{X}(x) = 1_{[0,1]}(x) = \left\{ \begin{array}{ll} 1 & \quad 0 \leq x \leq 1 \\ 0 & \quad elsewhere \end{array} \right. $

$ F_{X}(x) = \int_0^x f_{X}(\alpha)d\alpha = \int_0^x d\alpha = x $

Yn = m'i'n{X1,....,Xn}

(a)

$ \; \; \; F_{Y_{n}}(y) = P(\{Y \leq y\}) $
$ = P(\{min\{X_{1}, ..., X_{n}\} \leq y\}) $

= 1 − P({X1 > y},....,{Xn > y})

= 1 − P({X1 > y})P({X2 > y})...P({Xn > y})

= 1 − (1 − y)n


$ f_{Y_{n}}(y) = \frac{dF_{Y}(y)}{dy} = n(1-y)^{n-1} 1_{[0, 1]}(y) $


(b)

Yes. It converges in probability.

A random variable converges in probability if

$ P\{\mid Y_{n} - a \mid > \varepsilon\} \rightarrow 0 \;\; as \; n \rightarrow \inf \;\; for \;any\; \varepsilon > 0 $

Then the random variable is said to converge to a.

Consider

$ P\{\mid Y_{n}-0 \mid > \varepsilon\} = P\{Y_{n}>\varepsilon\} $

$ = 1 - P\{Y_{n} \leq \varepsilon\} = 1 - [1-(1-\varepsilon)^n] = (1-\varepsilon)^n $


$ As\; n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0 $

Since $ 0 < (1-\varepsilon) <1 $

Thus $ Y_{n} \rightarrow 0 $


(c)

From the solution to (a), we have

$ F_{Y_{n}}(y) = \left\{ \begin{array}{ll} 1 - (1-y)^{n} & \quad 0 < y \leq 1 \\ 1 & \quad y > 1 \end{array} \right. $

It converges in distribution since:
$ convergence(probability) \Rightarrow convergence(distribution) $


To find the convergence of CDF,
$ \lim_{n \to \infty} F_{Y_{n}}(y) = \left\{ \begin{array}{ll} 0 & \quad y \leq 0 \\ \lim_{n \to \infty} 1 - (1-y)^{n} & \quad 0 < y \leq 1 \\ 1 & \quad y > 1 \end{array} \right. = \left\{ \begin{array}{ll} 0 & \quad y \leq 0 \\ 1 & \quad y > 0 \end{array} \right. $

$ {\color{red} \text{*For part (a), there is a typo for the following equation}} $

$ {\color{red} F_{Y_{n}}(y) = P(\{Y \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) \text{, and should be changed to} } $

$ {\color{red} F_{Y_{n}}(y) = P(\{Y_{n} \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) } $

$ {\color{red} \text{*For part (b), I would like to add some additional parts to the following equation for better understanding}} $

$ {\color{red} n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0} $

$ {\color{red} \text{Since } 0 < (1-\varepsilon) <1} $

$ {\color{red} \text{to }} $

$ {\color{red}\text{Since } 0 < (1-\varepsilon) <1 \text{, as } n\rightarrow \infty \Rightarrow \lim_{n \to \infty}(1-\varepsilon)^n = 0 \; \; \; \therefore \lim_{n \to \infty}P\{\mid Y_{n}-0 \mid > \varepsilon\} = \lim_{n \to \infty} (1-\varepsilon)^n = 0} $

$ {\color{red} \text{*For part (c), the CDF of the random variable } \mathbf{Y}_n \text{ is incorrect. It should be}} $

$ {\color{red} F_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1-(1-y)^n, 0 \leq y \leq 1 \\ 1, y>1 \end{array}\end{cases} } $

$ {\color{red} \text{Therefore, it should be modified as follow}} $

$ {\color{red} \text{As } n \to \infty \text{,} \,\, F_{Y_n}(y) \to F_{Y}(y)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1, y \geq 0 \end{array}\end{cases} } $

$ \color{blue}\text{Solution 2:} $

(a)
Since $ \mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} $, and $ \{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} $ are i.i.d R.V.
We can have the CDF of $ \mathbf{Y}_{n} $
$ P(\mathbf{Y}_{n} \leq y) = P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} \leq y) $
$ = 1-P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} > y) $
$ = 1-P(\mathbf{X}_1 > y)P(\mathbf{X}_2 > y) \dots P(\mathbf{X}_n > y) $
$ = 1-(1-F_{X_1}(y))(1-F_{X_2}(y)) \dots (1-F_{X_n}(y))=1-(1-F_{X_1}(y))^n $

Since $ \mathbf{Y}_{n} $ is also uniform distributed on the interval [0,1]
When Yn = y < 0, $ P(\{\mathbf{Y}_{n}<0 \}) =0 $ since $ F_{X_1}(y) =0 $
When Yn = y > 1, $ P(\{\mathbf{Y}_{n}>1 \}) =1 $ since $ F_{X_1}(y) =1 $
When $ 0 \leq Y_n = y \leq 1 $

$ F_{X_1}(y)= \int_{0}^{y}f_{X_1}(x)\,dx=\int_{0}^{y}\, 1 \, dx = y $

Thus, the CDF of $ \mathbf{Y}_{n} $ is the following
$ F_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1-(1-y)^n, 0 \leq y \leq 1 \\ 1, y>1 \end{array}\end{cases} $
Thus, the pdf of $ \mathbf{Y}_{n} $ is
$ f_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} n(1-y)^{n-1}, 0 \leq y \leq 1 \\ 0, \,\,\, \text{elsewhere} \end{array}\end{cases} $


(b)
Let μ = E[Yn] and σ2 = E( | Yn − μ | 2). By Chebyshev inequality, we have
$ P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} = \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2} $
Now, we examine
$ E[|\mathbf{Y}_{n}-\mu|^2] = E[Y_n^2-2 \mu Y_n+\mu^2] = E[Y_n^2]-2\mu E[Y_n]+\mu^2=E[Y_n^2]-\mu^2. $

In problem (a), we have the pdf of Yn, we can find E[Yn] and $ E[Y_n^2] $
$ E[Y_n] = \int_{0}^{1}y f_{Y_n}(y) \,dy = \int_{0}^{1} y n(1-y)^{n-1} \, dy = \frac{1}{n+1} $
$ E[Y_n^2] = \int_{0}^{1}y^2 f_{Y_n}(y) \,dy = \int_{0}^{1} y^2 n(1-y)^{n-1} \, dy = \frac{2}{n^2+3n+2} $
As $ n \to \infty $
$ \lim_{n \to \infty} E[|\mathbf{Y}_{n}-\mu|^2] = \lim_{n \to \infty} \left( E[Y_n^2]-(E[Y_n])^2 \right)= \lim_{n \to \infty}\left( \frac{2}{n^2+3n+2}- (\frac{1}{n+1})^2\right)=0 $
$ \Rightarrow P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2} = 0 \,\,\text{as} \,n \to \infty $
Thus, the sequence Yn converges in probability to μ for any $ \varepsilon>0 $, and
$ \lim_{n \to \infty} \mu = \lim_{n \to \infty} E[Y_{n}] = \lim_{n \to \infty} \frac{1}{n+1} =0 $
$ \therefore P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) = P(|\mathbf{Y}_{n}-0| \geq \varepsilon) \to 0 \,\,\text{as} \,\, n \to \infty $

(c)
The CDF of Yn
$ F_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1-(1-y)^n, 0 \leq y \leq 1 \\ 1, y>1 \end{array}\end{cases} $

As $ n \to \infty $
$ F_{Y_n}(y) \to F_{Y}(y)= \begin{cases} \begin{array}{lll} 0, \,\, y <0 \\ 1, \,\, y \geq 0 \end{array}\end{cases} $
where $ 1-(1-y)^n \to 1 $ as $ n \to \infty $, when 0 < y < 1
Because 0 < (1 − y) < 1, $ (1-y)^n \to 0 $, when $ n \to \infty $
$ F_{Y}(y)= \begin{cases} \begin{array}{lll} 0, \,\, y <0 \\ 1, \,\, y \geq 0 \end{array}\end{cases} $
where this CDF is a step function.

Thus, the sequence of random variable Yn with cumulative distribution function $ F_{Y_n}(y) $ converges in distribution to the random variable Y with cumulative distribution function FY(y), which is a step function.


Comments on Solution 2:

1. Curly braces are required to take probabilities on events.

2. Error in part (c): As n grows to infinity, 1 - (1-y)n is definitely not equal to 1, for y = 0. Technically, that would lead to an indeterminate value at y = 0, or can be thought of to be 0 (as engineering common practice).


Related Problems


1. Let Xn be a sequence of independent, identical distributed random variables, each has Cauchy pdf
$ f(x)=\frac{1}{\pi (1+x^2)} \text{, } -\infty < x < \infty $

Let Yn a new random variable defined by
$ Y_{n} = \frac{1}{n} \sum_{i=1}^{n} \, X_{i} $

(a) Find the pdf of the sequence Yn, and describe how it depends on n.

(b) Does the sequence $ \mathbf{Y}_{n} $ converge in distribution?

(c) If yes, what is the distribution of the random variable it converges to?


2. Explain what happens in this problem when:

(a) Yn = max{X1, X2, ...., Xn}.

(b) X1, X2, ...., Xn are exponentially distributed.


Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn