(Power)
(Energy)
Line 9: Line 9:
 
<font size="4">
 
<font size="4">
  
<math>P = \int_{t_1}^{t_2} \! |f(t)|^2\ dt</math>
+
<math>E = \int_{t_1}^{t_2} \! |f(t)|^2\ dt</math>
  
<math>E=\int_0^{2\pi}{|2cos(t)|^2dt}</math>
+
<math>=\int_0^{2\pi}{|2cos(t)|^2dt}</math>
  
 
<math>=\int_0^{2\pi}{(2(2cos(t)^2-1)+2)dt}</math>
 
<math>=\int_0^{2\pi}{(2(2cos(t)^2-1)+2)dt}</math>
Line 23: Line 23:
 
<math>=(4\pi)</math>
 
<math>=(4\pi)</math>
 
</font>
 
</font>
 
  
 
==Power==
 
==Power==

Revision as of 15:55, 3 September 2008

Signal

$ y(t)=2cos(t) $

Energy

According to formula of Energy of a singal,we can get:

$ E = \int_{t_1}^{t_2} \! |f(t)|^2\ dt $

$ =\int_0^{2\pi}{|2cos(t)|^2dt} $

$ =\int_0^{2\pi}{(2(2cos(t)^2-1)+2)dt} $

$ =\int_0^{2\pi}{2+cos(2t))dt} $

$ =(2t+sin(2t))|_{t=0}^{t=2\pi} $

$ =(4\pi+0-0-0) $

$ =(4\pi) $

Power

According to formula of Power of a singal,we can get: $ P = \frac{1}{2T}\int_{-T}^{T}\!|f(t)|^2\ dt $

$ = \frac{1}{4\pi}\int_{-2\pi}^{2\pi}\!|2\cos(t)|^2\ dt $

(comparing the integral part with Energy part, they are basically the same)

$ = \frac{1}{4\pi} $

$ = \frac{1}{4\pi}(4pi) $

$ = \pi $


Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett