Line 6: Line 6:
 
\end{matrix}\right]</math></center>.
 
\end{matrix}\right]</math></center>.
  
Then the characteristic equation D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0.
+
Then the characteristic equation  
  By solving the quadratic equation for \lambda
+
 
, we will have two eigenvalues \lambda_{1}=-1
+
<center><math>D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0.</math></center>
  and \lambda_{2}=-6
+
 
. By substituting \lambda's
+
By solving the quadratic equation for <math>\lambda</math>, we will have two eigenvalues <math>\lambda_{1}=-1</math> and <math>\lambda_{2}=-6</math>. By substituting <math>\lambda's</math> into Eq [eq:1]
  into Eq [eq:1]
+

Revision as of 12:35, 29 April 2014

Let define a n-by-n matrix A and a non-zero vector $ \vec{x}\in\mathbb{R}^{n} $. If there exists a scalar value $ \lambda $ which satisfies the vector equation $ A\vec{x}=\lambda\vec{x} $, we define $ \lambda $

 as an eigenvalue of the matrix A, and the corresponding non-zero vector $ \vec{x} $ is called an eigenvector of the matrix A. To determine eigenvalues and eigenvectors a characteristic equation $ D(\lambda)=det\left(A-\lambda I\right) $ is used. Here is an example of determining eigenvectors and eigenvalues where the matrix A is given by 
$ A=\left[\begin{matrix}-5 & 2\\ 2 & -2 \end{matrix}\right] $
.

Then the characteristic equation

$ D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0. $

By solving the quadratic equation for $ \lambda $, we will have two eigenvalues $ \lambda_{1}=-1 $ and $ \lambda_{2}=-6 $. By substituting $ \lambda's $ into Eq [eq:1]

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal