(New page: Category:ECE600 Category:Lecture notes <center><font size= 4> '''Random Variables and Signals''' </font size> <font size= 3> Topic 10: Characteristic Functions</font size> </cent...)
 
Line 25: Line 25:
  
 
Now consider the complex random variable Z = <math>e^{i\omega X}</math>, where <math>\omega</math> ∈ '''R''' is a "frequency" variable. We can write Z as  <br/>
 
Now consider the complex random variable Z = <math>e^{i\omega X}</math>, where <math>\omega</math> ∈ '''R''' is a "frequency" variable. We can write Z as  <br/>
<center><math>Z=e^{1\omega X}=\cos(\omega X)+i\sin(\omega X) \ </math><br/>
+
<center><math>Z=e^{i\omega X}=\cos(\omega X)+i\sin(\omega X) \ </math><br/>
 
and <br/>
 
and <br/>
<math>E[Z]=E[e^{1\omega X}]=E[\cos(\omega X)]+iE[\sin(\omega X)] \ </math></center>
+
<math>E[Z]=E[e^{i\omega X}]=E[\cos(\omega X)]+iE[\sin(\omega X)] \ </math></center>
  
 
This expectation depends on <math>\omega</math> ∈ '''R''' and will be the characteristic function of X.  
 
This expectation depends on <math>\omega</math> ∈ '''R''' and will be the characteristic function of X.  

Revision as of 06:36, 29 October 2013


Random Variables and Signals

Topic 10: Characteristic Functions




Characteristic Functions

The pdf f$ _X $ of a random variable X is a function of a real valued variable x. It is sometimes useful to work with a "frequency domain" representation of f$ _X $. The characteristic function gives us this representation.

Definition $ \qquad $ Z:SC defined on (S,F,P) is a complex random variable if

$ Z = X+iY $

where X and Y are real valued random variables on (S,F,P).

Using the linearity of E[],

$ E[Z] = E[X] + iE[Y] \ $

Now consider the complex random variable Z = $ e^{i\omega X} $, where $ \omega $R is a "frequency" variable. We can write Z as

$ Z=e^{i\omega X}=\cos(\omega X)+i\sin(\omega X) \ $

and

$ E[Z]=E[e^{i\omega X}]=E[\cos(\omega X)]+iE[\sin(\omega X)] \ $

This expectation depends on $ \omega $R and will be the characteristic function of X.

Definition $ \qquad $ Let X be a random variable on (S,F,P). The characteristic function X is given by

$ \Phi_X(\omega)\equiv E[e^{i\omega X}]\qquad\forall\omega\in\mathbb R $

If X is continuous, we have

$ \Phi_X(\omega)= \int_{-\infty}^{\infty}e^{i\omega x}f_X(x)dx $

And if X is discrete, then we use

$ \Phi_X(\omega)= \sum_{x\in\mathcal R_x}e^{i\omega x}p_X(x) $

Note: The characteristic function looks like the Fourier Transform of f$ _X $, with opposite sign in the exponent. We can show that

$ f_X(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty}\Phi_X(\omega)e^{-i\omega x}d\omega $



Moments

Definition $ \qquad $ The Moment Generating Function (mgf) of random variable X is given by

$ \phi_X(s)\equiv E[e^{sX}]\qquad\forall s\in\mathbb C $

Moment Theorem $ \qquad $ The Moment Theorem (or Moment Generating Theorem) shows us how to use the mgf to find moments of X:
given a random variable X with mgf $ \phi_X $, the nth moment pf X is given by

$ \begin{align} \mu_n &= E[X^n] \\ \\ &=\phi^{(n)}(0) \\ \\ &= \frac{d^n\phi_X(s)}{ds^n}|_{s=0} \end{align} $

Proof:
Differenc=tiating $ \phi_X $ with respect to s n times gives

$ \begin{align} \phi_X^{(n)}(s)&=\frac{d^n}{ds^n}E[e^{sX}] \\ \\ &=E[\frac{d^n}{ds^n}e^{sX}] \\ \\ &=E[X^ne^{sX}] \end{align} $


So,

$ \phi_X^{(n)}(0)=E[X^n] $


This result can be written in terms of the characteristic function:

$ \mu_n = \frac{1}{i^n}\;\frac{d^n}{d\omega^n}\Phi_X(\omega)|_{\omega = 0} $


Example $ \qquad $ X is an exponential random variable. We can show that

$ \Phi_X(\omega) = \frac{1/\mu}{1/\mu - i\omega} $

since

$ f_X(x) = \frac{1}{\mu}e^{-\frac{x}{\mu}}u(x) $

Now,

$ \Phi_X'(\omega) = \frac{(1/\mu)\;i}{(1/\mu-i\omega)^2} $

and

$ \Phi_X''(\omega) = \frac{-2/\mu}{(1/\mu-i\omega)^3} $

So,

$ E[X]=\frac{1}{i}(\frac{(1/\mu)\;i}{(1/\mu)^2})=\mu $

and

$ E[X^2]=\frac{1}{i^2}(\frac{-2/\mu}{(1/\mu)^3})=2\mu^2 $

Then

$ Var(X) = 2\mu^2-\mu^2 =\mu^2 \ $



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett