(Moved over from old Kiwi)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:ECE662]]
 +
[[Category:MLE]]
 +
[[Category:parameter estimation]]
 +
[[Category:binomial distribution]]
 +
[[Category:poisson distribution]]
 +
 +
=Examples of Parameter Estimation based on Maximum Likelihood (MLE): the binomial distribution and the poisson distribution=
 +
for [[ECE662:BoutinSpring08_Old_Kiwi|ECE662: Decision Theory]]
 +
 +
Complement to [[Lecture_7_Old_Kiwi|Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"]]
 +
----
 +
 
=== Bernoulli Distribution ===
 
=== Bernoulli Distribution ===
  
Line 17: Line 29:
 
<math>\hat{p}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}=\frac{k}{n}</math>
 
<math>\hat{p}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}=\frac{k}{n}</math>
  
 
+
----
 
=== Poisson Distribution ===
 
=== Poisson Distribution ===
  
Line 31: Line 43:
  
 
<math>\hat{\lambda}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}</math>
 
<math>\hat{\lambda}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}</math>
 +
----
 +
More examples: [[MLE_Examples:_Exponential_and_Geometric_Distributions_Old_Kiwi|Exponential and Geometric Distributions]]
 +
 +
Back to [[Lecture_7_Old_Kiwi|Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"]]
 +
 +
Back to [[ECE662:BoutinSpring08_Old_Kiwi|ECE662, Spring 2008, Prof. Boutin]]

Latest revision as of 10:14, 20 May 2013


Examples of Parameter Estimation based on Maximum Likelihood (MLE): the binomial distribution and the poisson distribution

for ECE662: Decision Theory

Complement to Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"


Bernoulli Distribution

Observations: k successes in n Bernoulli trials.

$ f(x)=\left(\frac{n!}{x!\left(n-x \right)!} \right){p}^{x}{\left(1-p \right)}^{n-x} $

$ L(p)=\prod_{i=1}^{n}f({x}_{i})=\prod_{i=1}^{n}\left(\frac{n!}{{x}_{i}!\left(n-{x}_{i} \right)!} \right){p}^{{x}_{i}}{\left(1-p \right)}^{n-{x}_{i}} $

$ L(p)=\left( \prod_{i=1}^{n}\left(\frac{n!}{{x}_{i}!\left(n-{x}_{i} \right)!} \right)\right){p}^{\sum_{i=1}^{n}{x}_{i}}{\left(1-p \right)}^{n-\sum_{i=1}^{n}{x}_{i}} $

$ lnL(p)=\sum_{i=1}^{n}{x}_{i}ln(p)+\left(n-\sum_{i=1}^{n}{x}_{i} \right)ln\left(1-p \right) $

$ \frac{dlnL(p)}{dp}=\frac{1}{p}\sum_{i=1}^{n}{x}_{i}+\frac{1}{1-p}\left(n-\sum_{i=1}^{n}{x}_{i} \right)=0 $

$ \left(1-\hat{p}\right)\sum_{i=1}^{n}{x}_{i}+p\left(n-\sum_{i=1}^{n}{x}_{i} \right)=0 $

$ \hat{p}=\frac{\sum_{i=1}^{n}{x}_{i}}{n}=\frac{k}{n} $


Poisson Distribution

Observations: $ {X}_{1}, {X}_{2}, {X}_{3}.....{X}_{n} $

$ f(x)=\frac{{\lambda}^{x}{e}^{-\lambda}}{x!} x=0, 1, 2, $...

$ L(\lambda)=\prod_{i=1}^{n}\frac{{\lambda}^{{x}_{i}}{e}^{-\lambda}}{{x}_{i}!} = {e}^{-n\lambda} \frac{{\lambda}^{\sum_{1}^{n}{x}_{i}}}{\prod_{i=1}^{n}{x}_{i}} $

$ lnL(\lambda)=-n\lambda+\sum_{1}^{n}{x}_{i}ln(\lambda)-ln\left(\prod_{i=1}^{n}{x}_{i}\right) $

$ \frac{dlnL(\lambda)}{dp}=-n+\sum_{1}^{n}{x}_{i}\frac{1}{\lambda} $

$ \hat{\lambda}=\frac{\sum_{i=1}^{n}{x}_{i}}{n} $


More examples: Exponential and Geometric Distributions

Back to Lecture 7: "Comparison of Maximum likelihood (MLE) and Bayesian Parameter Estimation"

Back to ECE662, Spring 2008, Prof. Boutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva