Line 12: Line 12:
  
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 +
 +
<span style="font-size: 19px;"><math>
 +
\mathbf{X}(t) \text{ is SSS if } F_{(t_1+\tau)...(t_n+\tau)}(x_1,...,x_n) \text{ does not depend on } \tau. \text{ To show that, we can show that } \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n)  \text{ does not depend on } \tau:
 +
</math></span><br>
 +
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
 +
<span style="font-size: 19px;"><math>
 +
\Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{i\sum_{j=1}^{n}{\omega_jX(t_j+\tau)}}  \right ]
 +
</math></span><br>
 +
 +
 +
 +
<span style="font-size: 19px;"><math>
 +
\text{Define } Y(t_j+\tau) = \sum_{j=1}^{n}{\omega_jX(t_j+\tau)} \text{, so}
 +
</math></span><br>
 +
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<span style="font-size: 19px;"><math>
 +
\Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{Y(t_j+\tau)} \right ] = \Phi_{(t_1+\tau)...(t_n+\tau)}(1)
 +
</math></span><br>
 +
 +
 +
<span style="font-size: 19px;"><math>
 +
\text{Since } Y(t) \text{ is Gaussian, it is characterized just by its mean and variance. So, we just need to show that mean and variance of } Y(t) \text{ do not depend on . Since } Y(t) \text{ is  WSS, its mean is constant and does not depend on . For variance}
 +
</math></span><br>
 +
  
  

Revision as of 07:23, 29 July 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 2

Part 1,2]

 $ \color{blue} \text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.} $


$ \color{blue}\text{Solution 1:} $

$ \mathbf{X}(t) \text{ is SSS if } F_{(t_1+\tau)...(t_n+\tau)}(x_1,...,x_n) \text{ does not depend on } \tau. \text{ To show that, we can show that } \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) \text{ does not depend on } \tau: $


                $ \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{i\sum_{j=1}^{n}{\omega_jX(t_j+\tau)}} \right ] $


$ \text{Define } Y(t_j+\tau) = \sum_{j=1}^{n}{\omega_jX(t_j+\tau)} \text{, so} $


               $ \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{Y(t_j+\tau)} \right ] = \Phi_{(t_1+\tau)...(t_n+\tau)}(1) $


$ \text{Since } Y(t) \text{ is Gaussian, it is characterized just by its mean and variance. So, we just need to show that mean and variance of } Y(t) \text{ do not depend on . Since } Y(t) \text{ is WSS, its mean is constant and does not depend on . For variance} $



$ \color{blue}\text{Solution 2:} $

here put sol.2


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn