Line 1: Line 1:
= ECE QE AC-3 August 2011 =
+
= ECE QE AC-3 August 2011 Solusion =
  
 
===== 1. (20 pts) Consider the optimization problem,  =====
 
===== 1. (20 pts) Consider the optimization problem,  =====
Line 9: Line 9:
 
===== (i) Characterize feasible directions at the point &nbsp;<math>x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>  =====
 
===== (i) Characterize feasible directions at the point &nbsp;<math>x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>  =====
  
<span class="texhtml">''d''</span>&nbsp;is a feasible direction at&nbsp;<math>x^{*}(d\in\Re_{2}, d\neq0)</math>, if &nbsp;<math>\exists\alpha_{0}</math>&nbsp; that &nbsp;<math>\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \in\Omega \right]</math>&nbsp; for all&nbsp;<math>0\leq\alpha\leq\alpha_{0}</math><br>  
+
<span class="texhtml"</span><math>d\in\Re_{2}, d\neq0</math>&nbsp;is a feasible direction at&nbsp;<math>x^{*}</math>, if &nbsp;<math>\exists\alpha_{0}</math>&nbsp; that &nbsp;<math>\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \in\Omega \right]</math>&nbsp; for all&nbsp;<math>0\leq\alpha\leq\alpha_{0}</math><br>  
  
&nbsp;  
+
&nbsp;<math>\because x_{1}\geq0, x_{2}\geq0</math>
  
<br>  
+
<math>\therefore d=
 +
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re_{2}, d_{2}\neq0</math><br>  
  
 
===== (ii) Write down the second-order necessary condition for . Does the point satisfy this condition? =====
 
===== (ii) Write down the second-order necessary condition for . Does the point satisfy this condition? =====

Revision as of 17:21, 21 June 2012

ECE QE AC-3 August 2011 Solusion

1. (20 pts) Consider the optimization problem,

                  maximize   $ -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

                  subject to   $ x_{1}\geq0, x_{2}\geq0 $

(i) Characterize feasible directions at the point  $ x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

<span class="texhtml"</span>$ d\in\Re_{2}, d\neq0 $ is a feasible direction at $ x^{*} $, if  $ \exists\alpha_{0} $  that  $ \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \in\Omega \right] $  for all $ 0\leq\alpha\leq\alpha_{0} $

 $ \because x_{1}\geq0, x_{2}\geq0 $

$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re_{2}, d_{2}\neq0 $

(ii) Write down the second-order necessary condition for . Does the point satisfy this condition?

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett