Line 11: | Line 11: | ||
<math>\vdots</math> <math>\vdots</math> | <math>\vdots</math> <math>\vdots</math> | ||
− | <math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad for k\in\mathbb{N}</math> | + | <math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for} k\in\mathbb{N}</math> |
[[Category:MA181Fall2011Bell]] | [[Category:MA181Fall2011Bell]] |
Revision as of 06:04, 4 September 2011
Homework 2 collaboration area
Here's some interesting stuff:
$ \sum_{n=1}^N 1 = \dfrac11N $
$ \sum_{n=1}^N n = \dfrac12N\left(N+1\right) $
$ \sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right) $
$ \vdots $ $ \vdots $
$ \sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for} k\in\mathbb{N} $