(One intermediate revision by the same user not shown)
Line 13: Line 13:
 
Find the constant c  such that <math class="inline">f_{\mathbf{XY}}(x,y)</math>  is a valid pdf.
 
Find the constant c  such that <math class="inline">f_{\mathbf{XY}}(x,y)</math>  is a valid pdf.
  
[[Image:002.eps]]
+
[[Image:002.png]]
  
 
<math class="inline">\iint_{\mathbf{R}^{2}}f_{\mathbf{XY}}\left(x,y\right)=c\cdot \text{Area}=1</math>  where <math class="inline">\text{Area}=\frac{1}{2}.</math>  
 
<math class="inline">\iint_{\mathbf{R}^{2}}f_{\mathbf{XY}}\left(x,y\right)=c\cdot \text{Area}=1</math>  where <math class="inline">\text{Area}=\frac{1}{2}.</math>  
Line 40: Line 40:
  
 
<math class="inline">\hat{y}_{MAP}\left(x\right)=\arg\max_{y}\left\{ f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)\right\}</math>  but <math class="inline">f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right)</math> . Any <math class="inline">\hat{y}\in\left[0,1-x\right]</math>  is a MAP estimator. The MAP estimator is NOT unique.
 
<math class="inline">\hat{y}_{MAP}\left(x\right)=\arg\max_{y}\left\{ f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)\right\}</math>  but <math class="inline">f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right)</math> . Any <math class="inline">\hat{y}\in\left[0,1-x\right]</math>  is a MAP estimator. The MAP estimator is NOT unique.
 
----
 
[[ECE600|Back to ECE600]]
 
 
[[ECE 600 Exams|Back to ECE 600 Exams]]
 
=Example. Two jointly distributed random variables=
 
 
Two joinly distributed random variables <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  have joint pdf
 
 
<math>f_{\mathbf{XY}}\left(x,y\right)=\begin{cases}
 
\begin{array}{ll}
 
c  ,\text{ for }x\geq0,y\geq0,\textrm{ and }x+y\leq1\\
 
0  ,\text{ elsewhere.}
 
\end{array}\end{cases}</math>
 
 
(a)
 
 
Find the constant c  such that <math>f_{\mathbf{XY}}(x,y)</math>  is a valid pdf.
 
 
[[Image:002.eps]]
 
 
<math>\iint_{\mathbf{R}^{2}}f_{\mathbf{XY}}\left(x,y\right)=c\cdot Area=1</math>  where <math>Area=\frac{1}{2}</math> .
 
 
<math>\therefore c=2</math>
 
 
(b)
 
 
Find the conditional density of <math>\mathbf{Y}</math>  conditioned on <math>\mathbf{X}=x</math> .
 
 
<math>f_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{X}}(x)}.</math>
 
 
<math>f_{\mathbf{X}}(x)=\int_{-\infty}^{\infty}f_{\mathbf{XY}}\left(x,y\right)dy=\int_{0}^{1-x}2dy=2\left(1-x\right)\cdot\mathbf{1}_{\left[0,1\right]}(x).</math>
 
 
<math>f_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{X}}(x)}=\frac{2}{2\left(1-x\right)}=\frac{1}{1-x}\textrm{ where }0\leq y\leq1-x\Longrightarrow\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right).</math>
 
 
(c)
 
 
Find the minimum mean-square error estimator <math>\hat{y}_{MMS}\left(x\right)</math>  of <math>\mathbf{Y}</math>  given that <math>\mathbf{X}=x</math> .
 
 
<math>\hat{y}_{MMS}\left(x\right)=E\left[\mathbf{Y}|\left\{ \mathbf{X}=x\right\} \right]=\int_{\mathbf{R}}yf_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)dy=\int_{0}^{1-x}\frac{y}{1-x}dy=\frac{y^{2}}{2\left(1-x\right)}\biggl|_{0}^{1-x}=\frac{1-x}{2}.</math>
 
 
(d)
 
 
Find a maximum aposteriori probability estimator.
 
 
<math>\hat{y}_{MAP}\left(x\right)=\arg\max_{y}\left\{ f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)\right\}</math>  but <math>f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right)</math> . Any <math>\hat{y}\in\left[0,1-x\right]</math>  is a MAP estimator. The MAP estimator is NOT unique.
 
  
 
----
 
----

Latest revision as of 11:47, 3 December 2010

Example. Two jointly distributed random variables

Two joinly distributed random variables $ \mathbf{X} $ and $ \mathbf{Y} $ have joint pdf

$ f_{\mathbf{XY}}\left(x,y\right)=\begin{cases} \begin{array}{ll} c ,\text{ for }x\geq0,y\geq0,\textrm{ and }x+y\leq1\\ 0 ,\text{ elsewhere.} \end{array}\end{cases} $

(a)

Find the constant c such that $ f_{\mathbf{XY}}(x,y) $ is a valid pdf.

002.png

$ \iint_{\mathbf{R}^{2}}f_{\mathbf{XY}}\left(x,y\right)=c\cdot \text{Area}=1 $ where $ \text{Area}=\frac{1}{2}. $

$ \therefore c=2 $

(b)

Find the conditional density of $ \mathbf{Y} $ conditioned on $ \mathbf{X}=x $ .

$ f_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{X}}(x)}. $

$ f_{\mathbf{X}}(x)=\int_{-\infty}^{\infty}f_{\mathbf{XY}}\left(x,y\right)dy=\int_{0}^{1-x}2dy=2\left(1-x\right)\cdot\mathbf{1}_{\left[0,1\right]}(x). $

$ f_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{X}}(x)}=\frac{2}{2\left(1-x\right)}=\frac{1}{1-x}\textrm{ where }0\leq y\leq1-x\Longrightarrow\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right). $

(c)

Find the minimum mean-square error estimator $ \hat{y}_{MMS}\left(x\right) $ of $ \mathbf{Y} $ given that $ \mathbf{X}=x $ .

$ \hat{y}_{MMS}\left(x\right)=E\left[\mathbf{Y}|\left\{ \mathbf{X}=x\right\} \right]=\int_{\mathbf{R}}yf_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)dy=\int_{0}^{1-x}\frac{y}{1-x}dy=\frac{y^{2}}{2\left(1-x\right)}\biggl|_{0}^{1-x}=\frac{1-x}{2}. $

(d)

Find a maximum aposteriori probability estimator.

$ \hat{y}_{MAP}\left(x\right)=\arg\max_{y}\left\{ f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)\right\} $ but $ f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right) $ . Any $ \hat{y}\in\left[0,1-x\right] $ is a MAP estimator. The MAP estimator is NOT unique.


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva